College of Agricultural, Consumer and Environmental Sciences

BE BOLD. Shape the Future.

New Mexico State University

aces.nmsu.edu

Cover Crops and Their Potential Diseases To

Consider

Phillip Lujan, Ph.D.

Extension Plant Pathologist
Extension Plant Sciences
New Mexico State University

Talk outline

Cover Crop Basics

Cover Crops for New Mexico

Plant Disease Basics

Potential Diseases within Cover Crops

What is a cover crop?

- Plants grown between cash crop cycles
- Intercropped with cash crops to cover bare ground
- Planted in the absence of a "normal" crop
- Grown primarily to add organic matter and nutrients to the soil

Verdesian Life Sciences

Not harvested or partially harvested!

What is the purpose of a cover crop?

- Provide protection to the soil from water and wind erosion
- Biomass for increasing the soil organic matter
- Break soil compaction
- Supply nitrogen and nutrients to the soil
- Can help suppress weeds and plant diseases

How can cover crops help with erosion control?

 Surface covers reduce the ability of wind and water to move the soil by shielding the soil's surface

- Cover crops bind the soil together and hold it in place
- Cover crops slow the wind velocity or runoff velocity
- Improves the soil's capacity to absorb water

University of Nebraska

Farm Progress

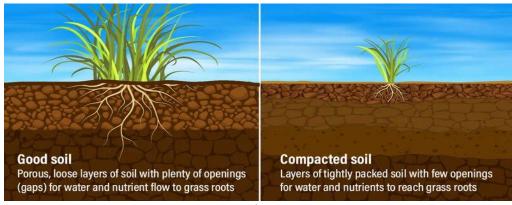
Cover crops and organic matter

 Adding organic matter improves the nutrient supply of the soil

Increases soil biological activities

Improves soil structure

Improves water holding capacity

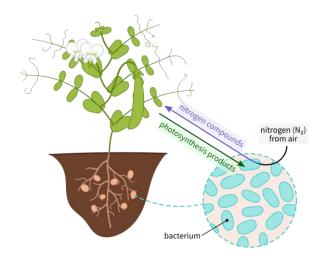

University of Maryland Extension

ARID-New Mexico State University

Cover crops and soil compaction alleviation

- Compaction occurs when the soil is too dense
 - Can affect root growth and water movement in the soil
 - Affect plant growth, health and production

J. Rodriguez



Prarie Farm Report

Cover crops and nitrogen fixation

Biological nitrogen fixation in legumes (legumehub.edu)

- Examples of legumes are alfalfa, clovers, beans
- Bacteria that make nitrate in roots with plants are called Rhizobium
- Nitrogen comes from the soil and air
- It is a relationship of give and take
- Plants supply bacteria with simple sugars and bacteria give nitrates to plants
- Can fix up to 270 lbs/ac N in a year
- Legumes can be planted as cover crops and worked back into the soil to supply nitrogen for the following cash crop

Cover crops and nutrient supply

- As cover crops grow, they are taking up nutrients
- These nutrients will be released when plants are terminated

Legumes	Tissue N (lb/ac)	Tissue P (lb/ac)	Tissue K (lb/ac)		
Cowpea_IC	282	/36	/278		
Cowpea_CA	253	, 26	240		
Cowpea_CC36	! 190	26	246		
Lablab	160	23	162		
Guar_DU	128	20	145		
Tepary bean	107	12	102		
Bush bean	90	8	57		
Lima bean	87	9 ,	\ 69 <i>i</i>		
Mung bean	57	11 /	83 /		

Dr. John Idowu, NMSU

Weed and disease suppression

- Thick cover crop stands can prevent most germinated weed seeds from completing their life cycle and reproducing (smother effect).
- Rye residues had 80-95% early broadleaf weed control
- Increase the number of beneficial insects feeding on weed seeds
- Some cover crops release allelochemical (natural toxins) to inhibit or slow the growth of other plants
- Brassicas (forage radish, mustard) contains glucosinolates that can suppress nematodes and plant pathogens

Dr. John Idowu

Classification of cover crops

- Cover crops are classified based on:
 - i. The way the cover crop is used (catch crop, green manure, living mulches, etc.)
 - ii. The type of crop planted (grasses, legumes, brassica etc.)
 - iii. When they are planted (summer, winter) most common

Winter cover crops

- Planted in late summer or fall
- Provide ground cover during the late fall/winter/early spring
- Winter covers must be cold-tolerant crops
- Critical to plant on time before the temperature becomes too low
- Winter hardy crops: triticale (hybrid of wheat and rye), hairy vetch, and cereal rye
- Cool season legumes: several clovers, vetches, medics, and field peas

Triticale

Clover

Summer (warm season) cover crops

- Normally planted in summer as green manure
- Can provide an opportunity for crop rotation
- Improve poor soils
- Provide nitrogen for the following winter cash crop
- Many species can be used for this purpose
- Examples of summer legumes
 - Cowpeas, Sweetclover, Sesbania, Guar, etc.

Cowpea

Sesbania

Deciding what cover crop works for you...

- What is your goal?
 - Increasing nitrogen, organic matter
 - Decreasing erosion, compact soils?
- What cover crop options are available?
- When is the seeding time?
 - Spring / fall
- What are the management practices?
 - No-till, conventional, organic, etc.
- Are there other important details to know?

Performance in Relation to Set Goals

Popular and Useful Choices of Cover Crops for New Mexico

Crop	Over-winter ability	Biomass amount	Soil structure improvement	Comments	
Annual Ryegrass	NO	**	***	Overall, an easy crop to establish	
Perennial Ryegrass	***	**	**	Faster establishment than other perennials. Extensive root system	
Winter Rye	***	***	**	Can grow at low pH and at cool temperatures	
Winter Wheat	***	***	**	Requires fertile soil; avoid wet or low pH soil.	
Sweet Clover	***	***	**	Better with high pH than other clovers	
White Clover	***	*	**	Good for low pH soil, treat with inoculants	
Tall Fescue	***	*	**	Persistent, may become weed-like.	
Buckwheat	NO	**	*	Do not allow to mature, or reseeding will occur	

*** = Relatively High;

** = Moderate;

* = Relatively Low

Cool Season Cover Crops

<u>Late Sept – Nov (Fall planted) in some cases early spring</u>

- Triticale/wheat/barley/rye
- Annual ryegrass
- Clover
- Vetch
- Austrian winter peas
- Forage radish (Tillage radish)

Triticale/wheat/barley/rye

Plant late September – November

General seeding rate: 80-120 lbs. / acre

- Excellent biomass
- Good weed suppression
- Interplant with peas, vetch, and clovers
- Don't let them go to seed!

Triticale (hybrid between wheat and rye)

- Upright growth habit: 3–5 feet
- Heat and drought tolerance
- Shade tolerance
- Flood tolerance
- Low fertility tolerance
- It is best to terminate when plants are small
- Mowing after heading can terminate
- Terminate at least two weeks before planting
- Triticale can become a weed if not completely terminated

Austrian Winter Pea

- Seeding rate: 50-80 lbs./ac
- Planting date: Sept. Nov.
- Climbing or prostrate growth (2 4 ft)
- Fixes nitrogen quickly (90 150 lbs. N/ac)
- Soil builder, erosion fighter, weed fighter
- Can produce excellent biomass
- Good for grazing
- Beneficial insect habitat
- Can work very well in mixed cover crops (can be mixed with grasses, other legumes, or brassicas)

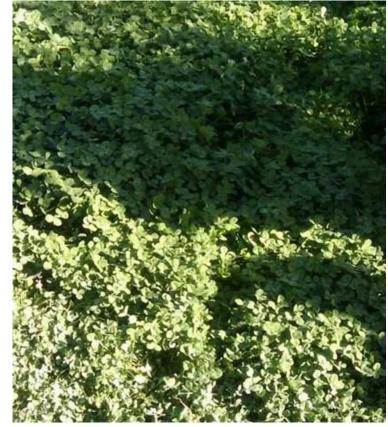
Annual Ryegrass

(also called Italian Ryegrass)

Plant late Aug. – Oct.

Seeding rate: 20-30 lbs. / acre

- Can produce quick cover in 4-6 weeks
- Weed suppression
- Interplant with legumes
- May need mowing if too fast for legume
- Tolerates shading (can grow in standing crop)
- Difficult to control if it goes to seed



Clovers

Plant in late Sept. – Oct.

Seeding rate: depends on type

- Nitrogen fixation
- Beneficial insect habitat
- Many can be used as forage
- Possible to interplant with winter cereal
- Difficult to establish on cracking clay soils

New Zealand White Clover Los Lunas, NM

Hairy Vetch

Plant late Sept. – Nov.

Seeding rate: 20-25 lbs. / acre

- Very good nitrogen fixation
- Beneficial insect habitat
- Can be mixed with winter cereals
- Cold tolerant
- Good biomass

Forage Radish

Plant late Sept. – Nov.

Seeding rate: 8 – 12 lbs. / acre

- Can break soil compaction layer
- Suppresses harmful nematodes
- Excellent biomass
- Can serve as a catch crop (fastgrowing plant between two cash crops)
- Good for erosion control

Radish holes after winterkill

Photo credit: Joel Gruver, Western Illinois University.
https://eorganic.org/node/4182

Warm Season Cover Crops:

- Generally planted: March July
- Cowpeas
- Lablab
- Pigeon Pea
- Buckwheat
- Perl Millet
- Sorghum Sudan
- Sesbania

Cowpeas

Plant March-July Seeding rate: 40-50 lbs. / acre

- Fixes nitrogen (150 lbs. N / ac.)
- Excellent weed suppression
- Easy to manage
- Can grow in poor soils
- Sandy & clay soils
- Can reduce nematode populations in the soil

Lablab (Hyacinth bean)

Plant March – July Seeding rate: 20 lbs. / acre

- Fixes nitrogen
- Excellent weed suppression
- Easy to manage
- Alkaline clay soils
- Drought tolerant
- Beware if you have nematodes

Buckwheat

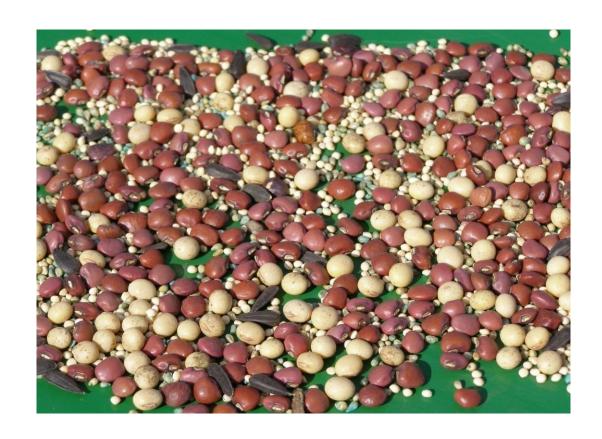
Plant March-July Seeding rate: 50 - 60 lbs. / acre

- Rapid growth
- Sandy or slay soils
- Excellent forage for poultry
- Toxic to horses
- Will not establish well if soilborne disease pressure is high
- Buckwheat can harbor insect pests including Lygus bugs, root lesion nematodes

Sorghum - Sudan

Plant March-May Seeding rate: 30-40 lbs. / acre

- Excellent biomass
- Excellent forage/hay
- Improves soil structure
- Drought tolerant
- Very good weed suppression
- Can regrow after mowing



Sesbania (Sesbania exaltata)

Plant March-July Seeding rate: 40-50 lbs. / acre

- Very high biomass 12.7 t/ac
- Good nitrogen fixation
- Excellent weed suppression
- Excellent forage
- Easy to manage
- Sandy & clay soils

Cover Crop cocktail/mixes

Cover Crop Cocktails/Mixes

- Insurance against cover crop failure if one species fail, others in the mix may survive
 - For example, in LC, Dr. Idowu planted 4 species (triticale, barley, Austrian winter pea, radish) and 2 of them (barley and radish) failed because of irrigation problems. We still had a strong performance of two species (triticale and AWP)
- Multiple benefits from different species in the mix you can achieve multiple goals i.e., organic matter addition, compaction alleviation, and nitrogen addition to the soil
- Enhancement of microbial diversity different microbes associate with different crops

Cover Crop Chart

Google: USDA

Cover Crop Chart

	GR	OWTH CYCLE		<u>PLAI</u>	NT ARCHITECTURE	<u>R</u>	ELA	TΙ	/E W	ATER USE
Α	=	Annual	γ	=	Upright			•	=	Low
В	=	Biennial	*	=	Upright-Spreading		•	•	=	Medium
Р	=	Perennial	<i>m</i>	=	Prostrate	•	•	•	=	High

--GRASS----GRASS--**BROWNTOP ANNUAL FESCUE MILLET FOXTAIL BARLEY AMARANTH MILLET** LEGUME A/P ♠ A/P A/B **BALANSA CLUSTER PEARL MUSTARD MEDIC COWPEA** OAT **CAMELINA CHICKPEA BUCKWHEAT BEAN** MILLET **CLOVER** A/P A/B **BERSEEM** JACK BEAN **PROSO WHEAT PHACELIA CANOLA PEA** LUPIN **LABLAB** QUINOA **MILLET CLOVER** A/B 44 44 **ANNUAL CRIMSON FABA GRAIN VELVET FENUGREEK CHICORY FLAX RADISH LENTIL RYEGRASS CLOVER** BEAN **BEAN SORGHUM** A/P **♦♦** A/B **♦♦** B B/P **SUDAN CEREAL** <u>RED</u> **SWEET MUNG CUCURBITA KALE TURNIP LESPEDEZA PIGEONPEA** RYE **CLOVER CLOVER** GRASS **BEAN** # Y 444 **WHITE BIRDSFOOT PARTRIDGE TRITICALE SPINACH BEET ALFALFA SAFFLOWER SOYBEAN TEFF CLOVER TREFOIL** PEA 200 * **♦♦♦** A/B **♦♦** A/B 44 444 44 444 A/B **SALINE** <u>KURA</u> **CHARD CARROT VETCH SAINFOIN SUNNHEMP PEANUT SUNFLOWER CORN TOLERANT CLOVER**

Cover crop limitations

- Management of cover crops is key to success
- Cost of seed and application needs to be justified
- Water consumption of cover crop growth may reduce soil moisture and harm the following cash crop
- May reduce soil temperature and cause slow growth in cooler regions
- Does nutrient value exceed the cost of cover crop production
- May harbor certain insects and disease that affect surrounding plants and vegetation

Plant Disease Basics

Causal Agents

Biotic factor (living)

- Fungi
- Bacteria
- Viruses
- Nematodes
- Parasitic plants
- Insects
- Weeds
- Can spread from plant to plant (patches/smaller area)

Abiotic factor (non-living)

- Temperature extremes
- Moisture extremes
- Soil problems
- Nutrient deficiency or toxicity
- Wind
- Pesticide toxicity
- Improper cultural practices
- Do not spread (larger area distribution, uniform)

The Plant Disease Triangle

Pathogen

Fungi

Bacteria

Viruses

Nematodes

Phytoplasmas

Host

Susceptible:

Crop

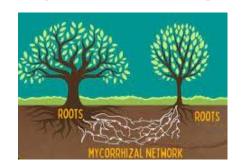
Cultivar

Disease

Favorable Environment

Air/soil temperature
Soil fertility
Soil type

Soil pH
Soil moisture
Rainfall/humidity


Disease Management

- The key to disease management is PREVENTION!
 - Well managed plants = healthy plants

- Most effective management programs incorporate all strategies known to reduce disease severity – "Integrated Disease Management"
 - Physical (pruning, etc.), cultural (irrigation, etc.), biological and chemical

 Accurate identification of the disease (pathogen) or disorder is essential for successful management

NMSU Plant Diagnostic Clinic

- Team effort
- Test! Don't Guess!
 - The NMSU Plant Diagnostic Clinic is here for you!!!
 - Co-Director/Weed Specialist: Dr. Leslie Beck
 - Co-Director/Plant Pathologist: Dr. Phillip Lujan
 - Plant Diagnostician: Dr. Srijana Dura
 - Entomologist: Drs. Joanie King & Jane Pierce
 - Horticulturist: Dr. Marisa Thompson
 - Nematologist: Jacki Beacham

NMSU Plant Diagnostic Clinic

Services provided:

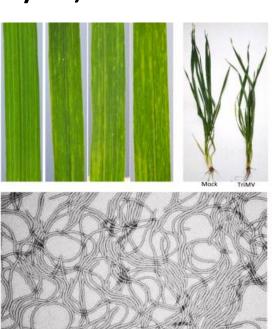
- Integrated plant diagnostic clinic
 - Diseases
 - Abiotic issues
 - Arthropod identification and damage
 - Plant and weed identification

 Permitted to receive unknowns (diseases/abiotic/nematodes/insects) from within the contiguous 48 states

Plant Diseases in Cover Crops

Triticale (hybrid between wheat and rye)

- Susceptible to a few fungal and viral diseases
 - Fungal: **Fusarium head blight**, Powdery mildew, Ergot, Rusts and Phytophthora
 - Viral: Triticum Mosaic Virus


Triticale (hybrid between wheat and rye)

- Fusarium head blight
 - Caused by Fusarium spp. with graminearum being the predominant species
 - Favorable conditions for infection:
 - Warm and wet with high humidity
 - Symptoms:
 - Bleached spikelets, shrunken kernels and fungal growth on affected heads
 - Management:
 - Resistant varieties, crop rotation (don't plant after corn), fungicides (initial flowering)

Triticale (hybrid between wheat and rye)

- Triticum Mosaic Virus (TriMV)
 - Transmitted by the wheat curl mites
 - Co-infection often occurs with wheat streak mosaic virus (WSMV)
 - Symptoms:
 - Yellowing and streaking, mottling, and stunting
 - Management:
 - Controlling volunteer wheat (mites preferred host)
 - Removal of infected plants

Tatineni et. al., 2025

Austrian Winter Pea

 Susceptible to a few fungal, nematode and viral diseases

 Fungal: Powdery mildew, Sclerotinia and Fusarium wilt

• Nematode: Root-knot nematode

Viral: Bean Yellow Mosaic Virus

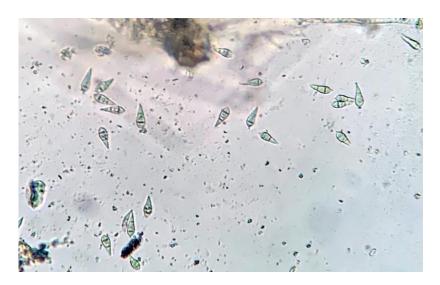
Austrian Winter Pea

- Powdery mildew
 - Caused by the fungus, Erysiphe pisi
 - Favorable conditions for infection:
 - Warm, dry weather with a cool, dewy morning
 - Symptoms and signs:
 - White, powdery fungal growth on leaves, stems and pods, yellowing and leaf drop
 - Management:
 - Resistant varieties, air circulation, field sanitation, crop rotation and fungicides

Austrian Winter Pea

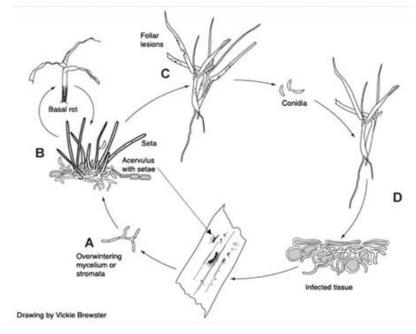
- Root-knot nematode
 - Caused by the nematode, *Meloidogyne* spp.
 - Symptoms:
 - Above-ground: stunted growth, yellowing leaves, wilt, reduced yield
 - Below-ground: galls or knots on the roots
 - Management:
 - Resistant varieties, crop rotation, organic matter (improve soil health and drainage), tilling, solarization, and sanitation

Annual Ryegrass


(also called Italian Ryegrass)

 Susceptible to mostly fungal diseases such as Gray Leaf Spot, Rusts,
 Anthracnose and Powdery mildew

Annual Ryegrass


- Gray Leaf Spot
 - Caused by the fungus, Pyricularia grisea
 - Favorable conditions for infection:
 - High temperatures (82-90F), leaf wetness, nitrogen fertility, plant stress
 - Symptoms:
 - Blue-gray cast, yellow appearance, leaves can become matted and greasy, leaf lesions, patches and leaf death
 - Management:
 - Cultural practices such as irrigation (water deeply but infrequently), avoid excessive or quick release fertilizer, air circulation; fungicides available

Annual Ryegrass

- Anthracnose
 - Caused by the fungus, Colletotrichum cereale (graminicola)
 - Favorable conditions for infection:
 - Warm (70-90F) and wet conditions, particularly at night, stressed grass (soil compaction or nutrient issues (low potassium or phosphorus or excess nitrogen))
 - Symptoms:
 - Foliar blight: yellow to brown lesions on older leaves
 - Basal rot: develops in late summer to fall, infected leaves turn yellow, with a darkened crown at the base of the plant
 - Management:
 - Cultural practices such as irrigation (water deeply but infrequently), avoid excessive or quick release fertilizer, air circulation; fungicides available

Clover

Susceptible to viruses and fungal diseases

Viruses: Alfalfa mosaic, Red clover mosaic

Fungal: Clover rot, Aphanomyces root rot,

Fusarium root rot

New Zealand White Clover Los Lunas, NM

Clover

Alfalfa mosaic virus

Transmitted by aphids, infected seeds or mechanical spread

- Leaf mosaic, necrosis, stunting, deformed plants and plant death
- Management:
 - Use certified virus-free seed, weed control (aphids), resistant varieties, remove infected plants

Clover

- Fusarium root rot
 - Caused by the fungus, Fusarium spp.
 - Favorable conditions for infection:
 - Plant stress and insect damage
 - Symptoms:
 - Stunted growth, wilting, root and crown discoloration
 - Management:
 - Promote plant vigor, crop rotation, insect control (rootfeeding insects such as root borer), plant good certified seed

Hairy Vetch

Susceptible to fungal diseases and nematode pests

Fungal: Anthracnose, Rusts, Powdery

Mildew and Sclerotinia Stem Rot

Nematode: Root-knot nematode

Hairy Vetch

- Sclerotinia Stem Rot
 - Caused by the fungus, Sclerotinia sclerotiorum
 - Favorable conditions for infection:
 - Cool, wet conditions
 - Symptoms and signs:
 - Wilting, white mycelium on stems, lesions, rot and black sclerotia
 - Management:
 - Air circulation, sanitation, irrigation management and crop rotation; fungicides available

Forage Radish

Susceptible to fungal, bacterial or viral diseases

Fungal: Alternaria leaf blight, cercospora leaf spot, Fusarium wilt, **Verticillium wilt**

Bacterial: Bacterial soft rot

Viral: Mosaic virus

Forage Radish

- Verticillium wilt
 - Caused by the fungus, Verticillium dahliae
 - Favorable conditions for infection:
 - Between 64-90F and can be spread through soil, wind and water
 - Symptoms:
 - Yellowing of lower leaves, stunting of plant, dark-brown discoloration around and in the vascular system, wilting
 - Management:
 - Crop rotation, destroy infected material

Forage Radish

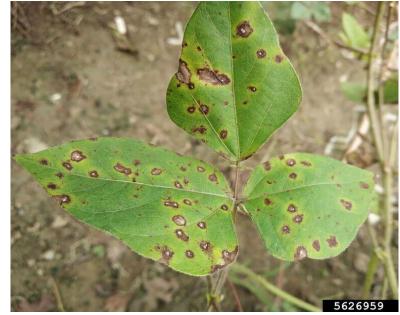
- Bacterial soft rot
 - Caused by the bacteria, Pectobacterium sp. / Pseudomonas sp.
 - Favorable conditions for infection:
 - Prolonged moisture from excessive rain or irrigation and mild/humid temperatures
 - Symptoms:
 - Water-soaked tissue, rotted tissue, foul odor and wilting
 - Management:
 - Sanitation, manage humidity, optimize plant health, plant resistant cultivars

Cowpeas

Susceptible to fungal, bacterial and viral diseases

Fungal: Powdery mildew, **Cercospora**, Fusarium root rot, Southern Blight

Bacterial: Bacterial blight and Bacterial wilt


Viral: Cowpea mosaic

Cowpeas

- Cercospora leaf spot
 - Caused by the fungus, Cercospora canescens
 - Spread by wind and rain-blown spores
 - Symptoms:
 - Leaf spots that expand to become reddish-brown with a yellow halo, powdery appearance, and leaf defoliation
 - Management:
 - Resistant varieties, sanitation, crop rotation, avoid overhead irrigation; fungicides available (mancozeb or copper containing fungicides)

Cowpeas

- Cowpea mosaic virus
 - Transmitted by leaf-feeding beetles (Chrysomelidae), seed or mechanical
 - Symptoms:
 - Leaf mosaic (light and dark green patterns), leaf necrosis, stem and pod discoloration, leaf area reduction, stunting
 - Management:
 - Plant certified seeds, manage beetle populations and maintaining good field sanitation

Lablab (Hyacinth bean)

Susceptible to fungal, bacterial and viral diseases

Fungal: Anthracnose, Powdery mildew, Root Rot

Bacterial: Bacterial Wilt and Bacterial Leaf Spot

Viral: Lablab Bean Mosaic
Virus/Dolichos Yellow Mosaic Virus
(DYMV)

Lablab (Hyacinth bean)

- Lablab Bean Mosaic Virus/Dolichos Yellow Mosaic Virus (DYMV)
 - Transmitted by the whitefly vector, Bemisia tabaci

- Yellow mosaic patches, stunted growth and reduced yields
- Management:
 - Whitefly management, planting resistant varieties and removal of infected plants

Buckwheat

Susceptible to fungal and viral diseases and nematode pests

Fungal: Stem Rot, Powdery Mildew,

Rhizoctonia Root Rot

Viral: Curly Top

Nematode: Root Lesion Nematodes

Buckwheat

- Rhizoctonia Root Rot
 - Caused by the fungus, Rhizoctonia solani
 - Favorable conditions for infection:
 - Disease is favored by intermediate soil moisture and most active in warm soil temperatures
 - Symptoms:
 - Root and stem lesions, root girdling, yellowing leaves, stunting and wilting
 - Management:
 - Fungicide-treated seed, crop rotation, improve soil drainage, do not over-fertilize

Buckwheat

- Curly Top Virus
 - Transmitted by the beet leafhopper
 - Symptoms:
 - Stunting, leaf chlorosis, small/shriveled leaves, plant necrosis, plant death
 - Management:
 - Sanitation (manage weeds), remove infected plants, shading (leafhoppers prefer sunny areas)

Sorghum - Sudan

Susceptible to fungal and bacterial diseases

Fungal: Anthracnose, Rust, and Leaf Blight

Bacterial: Bacterial Leaf Stripe

Sorghum - Sudan

- Bacterial leaf stripe
 - Caused by the bacteria, Burkholderia andropogonis
 - Favorable conditions for infection:
 - High humidity, prolonged leaf wetness, presence of infected residue from previous crops
 - Symptoms:
 - Elongated, narrow, yellow to brown lesions, wavy or irregular margin of the lesions
 - Management:
 - Resistant hybrids, crop rotation, sanitation, seed treatment

Sesbania (Sesbania exaltata)

Susceptible to fungal, viral and nematode pests

Fungal: Collar and Stem Rot, Leaf Spot

Viral: **Sesbania Mosaic Virus** and Cowpea Mild Mottle Virus

Nematode: Root-knot nematode

Sesbania (Sesbania exaltata)

Sesbania Mosaic Virus

- Transmitted by mechanical or sap
- Symptoms:
 - Mosaic symptoms, stunted growth, reduced photosynthesis and leaf deformation
- Management:
 - Prevention (no cure), use certified seed, careful handling and destroy infected plants

The Plant Disease Triangle

Pathogen

Fungi

Bacteria

Viruses

Nematodes

Phytoplasmas

Host

Susceptible:

Crop

Cultivar

Disease

Favorable Environment

Air/soil temperature
Soil fertility
Soil type

Soil pH
Soil moisture
Rainfall/humidity

Disease Management

- The key to disease management is PREVENTION!
 - Well managed plants = healthy plants
- Most effective management programs incorporate all strategies known to reduce disease severity – "Integrated Disease Management"
 - Physical (pruning, etc.), cultural (irrigation, planting area, etc.), biological and chemical

 But first! Accurate identification of the disease (pathogen) or disorder is essential for successful management

Questions about the presentation or plant disease problems/sampling suggestions?

Contact: Dr. Phillip Lujan

• Phone: 575-646-1822

• Email: <u>pl11@nmsu.edu</u> (preferred method)

Office: Skeen Hall, NMSU N258

Websites: https://pubs.nmsu.edu/howto/index.html

