

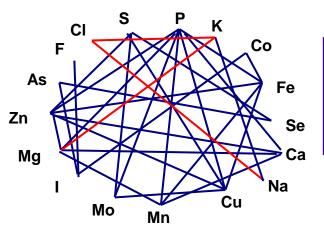
Why need to supplement cattle

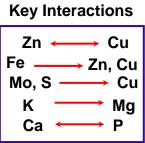
- Increase forage intake
- Forage could be lacking in energy or protein
- Lack of adequate forage
- Requirements exceed that offered by forage base
- Inadequate ratio of protein to energy

Why do we feed mineral?

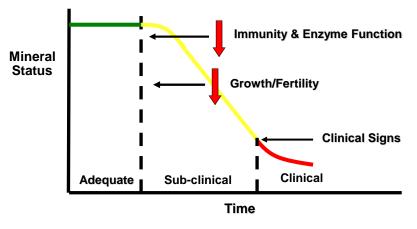
- 1. Phosphorus
- 2. Other
 - 1. Calcium
 - 2. Potassium
 - 3. Magnesium (sometimes)
- 3. Trace minerals
- 4. Vitamins

Minerals


- Most complicated & least understood components of nutrition
 - Forage mineral content varies
 - Mineral supplement intake also varies
- Recent interest has been fueled by:
 - Increased mineral cost
 - Cost reducing strategies



Mineral Interactions



Adapted from Greene, 1998

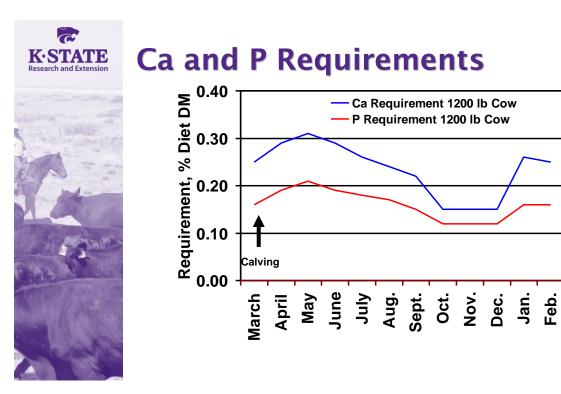
Model of a Decline in the Trace Mineral Status of Cattle

Wikse, 1992

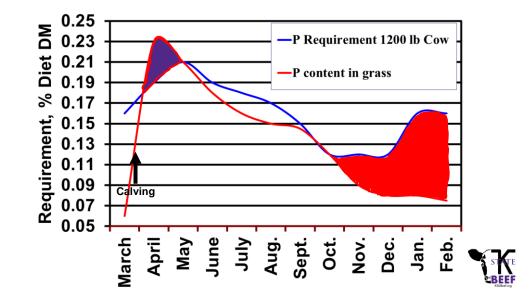
Minerals

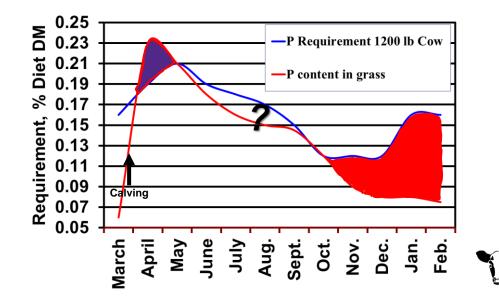
- Macrominerals
- Expressed % of diet (part per hundred)
 - Calcium
 - Phosphorus
 - Magnesium
 - Potassium
 - Sulfur
 - Sodium
 - Chlorine

- <u>Micro</u>minerals (trace)
- Expressed as ppm
 - copper
 - zinc
 - selenium
 - manganese
 - cobalt
 - iodine
 - iron
 - chromium
 - molybdenum

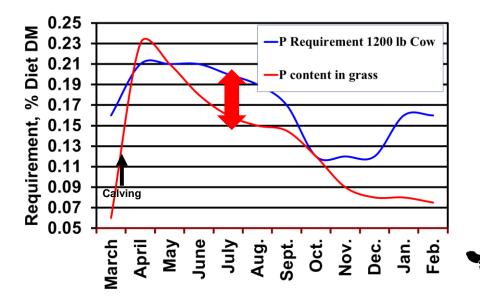


Developing a Mineral Program

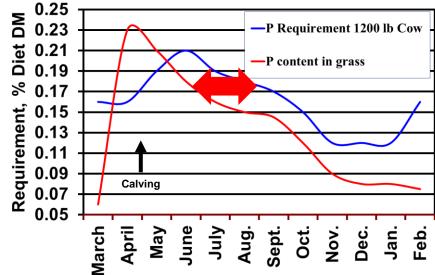

- 1. Assess animal need
- 2. Dietary (forage + feed) mineral supply
- 3. Selecting an appropriate supplement
 - Supplementation Strategy



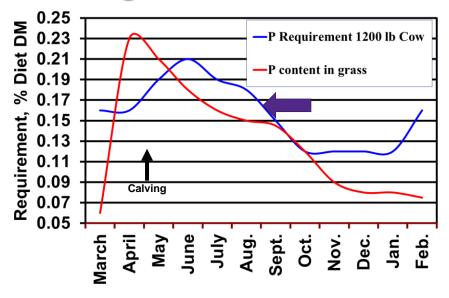
P Needs



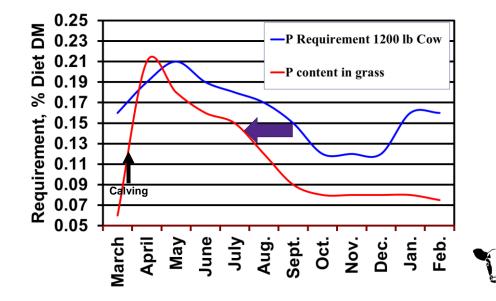
P Needs



Higher milking cow...



Later calving...



Later calving...+ early weaning...

No rain...

So...

- Cows req. = gestation +/- lactation
- (Requirement) (grass + feed) = supplement needed

Supplemental Feed

Feedstuff	% P	
Native pasture	0.06 - 0.30	
Soybean Meal	0.71	
Cottonseed Meal	0.76	
DDG	0.83	
Corn Gluten Feed	0.95	
Wheat Midds	1.00	

Wright, 2003

Distiller's Grains and Sulfur

Feedstuff	Sulfur, % DM
Alfalfa	0.28
Corn	0.14
Wheat Midds	0.19
Cottonseed Meal	0.26
Soybean Meal	0.46
Corn Gluten Feed	0.47
Dried Distiller's Grains	0.77 (0.44 – 1.72)

NRC, 2000; Buckner et al., 2008

Supplemental Feed

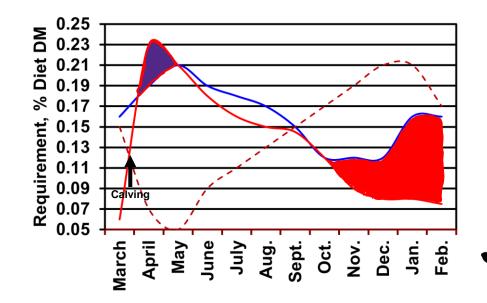
- 1200 lb mature beef cow
 - Peak lactation P requirement = 26.5 g/d

	% P	P, g/d
Dry Matter Intake		
27.6 lbs Native Grass	0.10	12.5
3.0 lbs DDGS	0.83	11.3
	Total	23.8

90% of Lactation requirement!

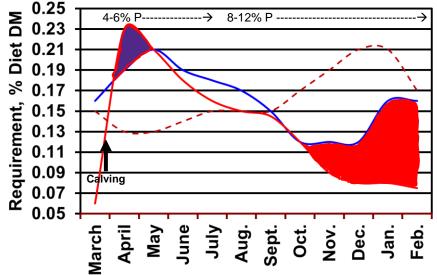
Be aware of mineral imbalances!

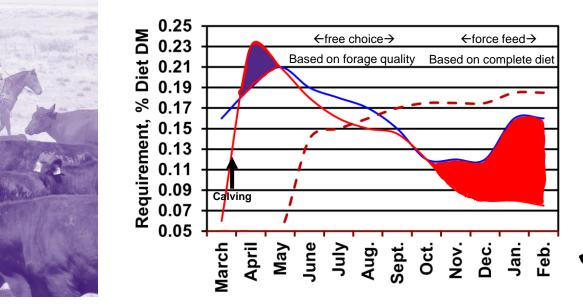
Water Sources



Supplementation Strategies

- 1. Continuous
 - A. Same mineral year round
 - A. Consumption will vary w/ grass phos
 - B. Forage base determines mineral specs
 - A. Easier to achieve target consumption
- 2. Strategic Supplementation
 - Altered in response to animal need + dietary supply


Same mineral all year



Match formula to needs through the year

K·STATIFeed strategically

Microminerals (trace minerals)

- Outside of selenium, many of the important microminerals are deficient in forages
 - Selenium deficient areas of the country
 - Kansas has fairly good soil selenium which correlates to adequate selenium in forages in general

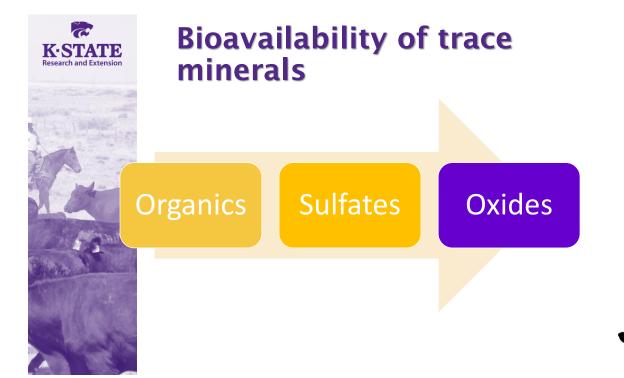
SALT and trace minerals need to supplemented on a regular basis

Profit Tips

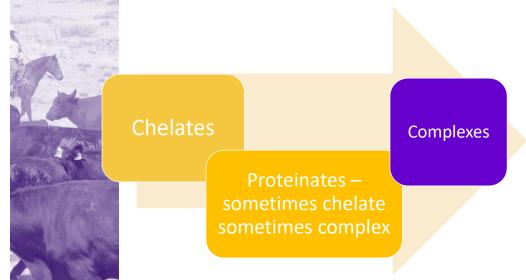
- Minerals: important component of nutrition
 - Reproduction, growth, health = Profit
- Keep program simple but:
 - Animal needs
 - Dietary supply

Breeding - trace mineral

- Trace minerals become very important from a breeding perspective
 - Cu, Zn, Se, Mn, Mg??
- Many forms of trace minerals
 - Organic
 - Chelated, Complexes, proteinate, polysaccharide, hydroxy analogue chelate, metal proprionate
 - Non-organic
 - ZnO, ZnS04, MnO, etc



Organic vs non (inorganic)


- Yes to organics if issues with....
 - Breeding
 - Foot rot (especially Met-Zn)
 - Scours
 - Grass tetany (amino acid-Mg)
 - Weaning
 - Calving
 - Al or embryo work

• No if herd seems healthy and productive

Bioavailability of organic trace minerals

Brand X Mineral Guaranteed Analysis

Calcium, not less than......11.5% Calcium, not more than......13.5% Phosphorous, not less than.....12.0% Salt, not less than......11.0% Salt, not more than.......13.0% Potassium, not less than......1300 ppm Copper. not less than......1300 ppm Iodine, not less than......1300 ppm Iodine, not less than.......1300 ppm

Ingredients

Dicalcium Phosphate, Processed Grain By-Products, Salt, Calcium Carbonate, Yeast Culture, Potassium Chloride, Manganous Oxide, Zinc Sulfate, Iron Oxide, Manganese Sulfare, Copper Oxide

Directions for use:

Beef Cattle- Brand X Mineral is recommended for free choice feeding to all cattle grazing grase pastures. Optimum intake § 2-4 ounces per head daily

Mineral Tag

if it's not on the label it may not be in the product!

Ingredients differ in bio-availability

Sulfate forms are generally more available

Be aware of target intake

Injectable trace minerals

- Varying results all based on whether animals were in deficiency or not prior to injection
- 5 studies in Nebraska (thesis of Carmen J Brasche)
 - Injectable did increase liver and serum levels of Cu, Se, Zn, Mn in cows and calves
 - However, no difference in animal performance measures including growth, AI rates, or preg rates
- All animals were in adequate mineral status prior to injection

Injectable trace minerals

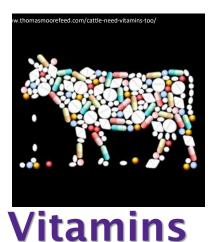
- K-State Study with cows in Manhattan and Hays, KS
- Injected ~105 d before calving and 30d before Timed AI
 - Calves from dams that were injected also received injections at birth and ~71 DOA

Mundell et al., 2015

Injectable trace minerals

- No difference in cow weight and BCS from initiation of study to calving and AI to weaning
 - BCS increased in TM injected cows between calving and AI
- % of cows cycling and overall preg rate not different
 - TM injection increased TAI preg 11%
- Calf BW at birth, ADG, weaning, and adj 205d weights not different
- All cows had free-choice mineral thus potentially all cows had adequate status

Mundell et al., 2015



Trace minerals and foot rot

- Organic iodine and Zn have been found to help with prevention of foot rot
- Organic iodine EDDI (ethylenediamine dihydriodide)
 - 20-25 mg/hd/d
 - FDA regulates how much EDDI can be used so be careful if formulating your own mineral mix – follow regs
- Organic Zn ZnMet
- Organic forms of Cu and Se ??

Importance of vitamins

- A
 - Minimize calf scours, retained placenta
- E

• B

• C

- Immune function, antioxidant, absorption of vitamin A and selenium
- D
- K
- We don't need to feed to
- mature ruminants because the rumen microbes will synthesize!!

Dietary requirements

Vitamin A

- Dry pregnant cow
 - 1270 IU/lb DMI
 - 27.2 IU/lb of body weight
- Lactating cow and breeding bull
 - 1769 IU/lb DMI
 - 38.1 IU/lb body weight
- Feedlot calves
 - 998 IU/lb DMI
 - 21.3 IU/lb body weight
- Prevention of scours
 - 30,000-45,000 IU/day

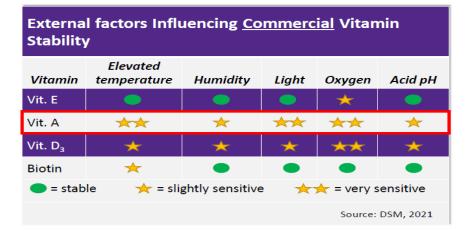
Vitamin E

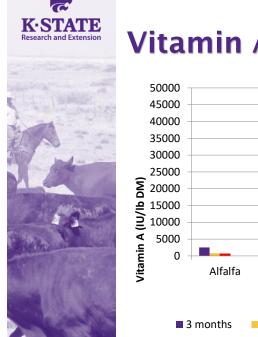
- Nonstressed mature beef cattle
 Diet usually meets requirements
- Newly received stressed calves • 182-227 IU/ day
- Feedlot cattle that have been straightened
 - 12-16 IU/lb DMI
 - 0.24-0.33 IU/lb body weight

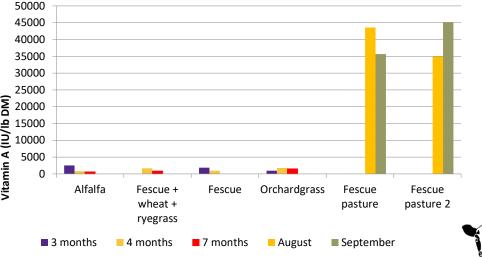
Vitamin A story

- Sources
 - Legumes
 - Alfalfa
 - Lush leafy green forage
 - Cover crops
 - Yellow corn
- Stored in liver for 2-4 months (NRC, 2017)
 - Fill gaps in low dietary vitamin A periods

Vitamin A Story


- Old hay that has been stored for a long time, degrades Vit. A
- Dormant forages low in Vit. A
- Ensiling destroys Vit A (Airado-Rodiquez, 2011)
- Mature plants lower Vit A (Maynard, 1979)
- Vitamin A in mineral mix degrades with heat, moisture, trace minerals
- Transplacental transfer in minimal
 - Colostrum consumption and absortion necessary for neonates (Swanson, 2000)


Protein, phosphorus, zinc, iodine deficiencies during pregnancy impairs Vit. A metabolism and reduces colostrum concentration (Zanker,


Stability of Commercial Vitamins

Vitamin A degradation

Pickworth et al., 2012

Vitamin E story

Good things

- Sources
 - Alfalfa
 - Lush leafy green forage
 - Alfalfa meal
 - Whole grains with oil

Issues

- Diets high in sulfur containing amino acids, selenium, corn oil, linseed oil, or soybean oil needs more vitamin E
- Long storage reduces E potency
- Vitamin E in mineral mix degrades with heat

- At least 45 days prior to calving to help with calf scours
- Early lactation
- Not supplementing something such as alfalfa in dormant grass season
- Feeding only harvested forages

What has been seen in Operations

Vitamin A results: KSVDL

Sample	Number	Deficient
Serum	368	95.1%
Liver	109	53.2%
Normal: serum (0.3-0.7 ppm); liver (1-4 ppm)		

Hanzlicek

Dietary Requirements

Daily requirement

Dry heifer or cow 27 IU/lb. b.w./day

- 1,200 lb. cow = 32,400 IU/da
- 1,400 lb. cow = 37,800 IU/da
- 1,600 lb. cow = 43,500 IU/day

NRC, 2017

	Needed Vitamin A Concentration 1,400 lb. cow	
	Mineral Consumption	Concentration (IU)/lb. mineral
ay ay	2 oz./day	302,400
ay	3 oz./day	201,600
	4 oz./day	151,200

Remember the non-eaters

What about Injectables?

Estimated length of time injectable vitamin A effectiveness		
<u>Source</u>	Effective time estimate	
Canada	2-4 weeks	
OSU	2-3 months	
KSU	4 weeks	
MU	4 weeks	
Texas	1-3 months, depending on age and stage of gestation	

Jaymelynn Farney, PhD jkj@ksu.edu 620-820-6125

