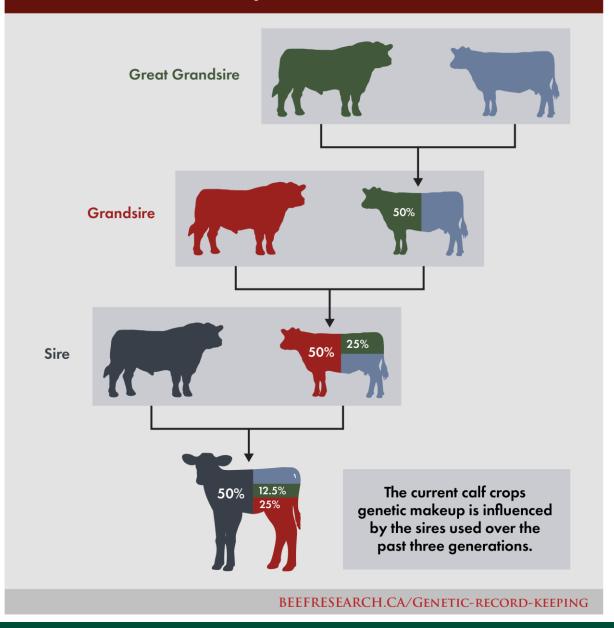

Basics of Sire Selection

Lacey Quail, PhD
Extension Livestock Management Specialist
North Dakota State University
North Central Research Extension Center, Minot, ND


NDSU

EXTENSION

Made with biorender.com

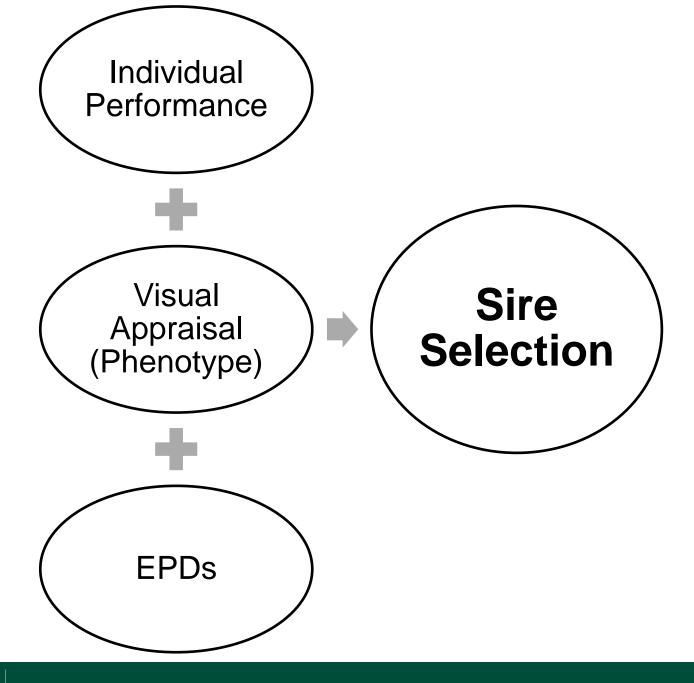
Genetic Impact of Sire Selection

If retaining
heifers, 87.5% of her
genetics come from
last three sires
used in the herd.

The sire you use in your breeding program in 2025 will genetically influence calves in 2028 ...choose wisely!

Beef Cattle Research Council

How do I know what's best?



Steps to Sire Selection

- 1. Set direction for your operation
 - Production goal
 - Selection priorities
- 2. Evaluate seedstock producers
 - Environment / management
 - Production goals

Use all the information available to you to make informed decisions.

- 3. Evaluate sires → start with reference sires
 - Contact seller
 - Soundness
- 4. Budget

Understanding EPDs

Expected Progeny Difference

- A <u>prediction</u> (+ OR -)
- Estimate of sire's ability to transmit genetic potential to offspring
- How is the value calculated?
 - Sire's performance data
 - Performance data of sire's progeny, dam, sire, siblings, etc.
 - Genetic correlations

- Accuracy
 - $-0 \rightarrow 1$
 - Level of confidence in EPD
 - Not related to variation in progeny
 - More data = more accuracy
 - Yearling bulls may have low accuracy

Understanding EPDs

Expected Progeny Difference

- A <u>prediction</u> (+ OR -)
- Estimate of sire's ability to transmit genetic

potential

- How is the calculated
 - Sire's p

Only compare EPDs (and Index values) between sires of the same breed

- Performance data of sire's progeny, dam, sire, siblings, etc.
- Genetic correlations

- Accuracy
 - $-0 \rightarrow 1$
 - Level of confidence in

I to variation in

= more

 Yearling bulls may have low accuracy

Abbreviations to Know

EPD	Definition	Breed	Units / Explanation
CED CE	Calving Ease Direct Calving Ease	-	Percent of unassisted calving in mated 2-year-olds
MCE CEM	Maternal Calving Ease Calving Ease Maternal	-	Percent of unassisted calving in sire's daughters
BW, WW, YW, CW	Birth, Weaning, Yearling, Carcass Weight	-	Pounds
SC	Scrotal Circumference	-	Centimeters
MM Milk	Maternal Milk	-	Pounds of weaning weight due to milking ability of sire's daughters
UDDR / TEAT US / TS	Udder suspension / Teat size	Hereford	Scale points (1 to 9) of sire's daughters
SCF STAY	Sustained Cow Fertility Stayability	Hereford Simmental	Probability of sire's daughters remain in herd at 6 (Sim.) or 12 (Hereford) years
HP	Heifer Pregnancy	Angus	Percent, probability of sire's daughters becoming pregnant as first-calf heifers
PAP	Pulmonary Arterial Pressure	Angus	mmHg, lower is better, susceptibility of sire's progeny to altitude disease
RE / REA	Ribeye Area	-	Square inches, ribeye area of progeny

Understanding \$Index

Typically designed for specific scenario

- Formed from set of traits that have economic relevance
- May not know all traits included in the index value / relevance to YOU

- Each trait is weighted in the index equation
- Don't know how much each trait is weighted

Considers inputs AND outputs

Abbreviations to Know

Index	Definition	Breed	Explanation
BMI\$	Baldy Maternal Index	Hereford	\$/hd; Maternal + SCF, WW, MCW, MM, CW, MARB, REA; - DMI
CHB\$	Certified Hereford Beef Index	Hereford	<i>\$/hd</i> ; Terminal → progeny targeted to CHB + CW, MARB, ADG, REA; - DMI, FAT
\$M	Maternal Weaned Calf Value	Angus	<i>\$/hd</i> ; conception to weaning profit, retain heifers; CED, CEM, WW, Milk, HP, DOC, MCW, Claw, Angle
\$W	Weaned Calf Value	Angus	<i>\$/hd</i> ; profit differences in progeny to weaning; BW, WW, Milk, MCW
\$G	Grid Value	Angus	<i>\$/carc.</i> ; market cattle on above-industry-average carcass grid; CW, MARB, REA, FAT
\$B	Beef Value	Angus	<i>\$/carc.</i> ; terminal; YW, DMI, MARB, CW, REA, FAT
\$C	Combined Value	Angus	\$/hd; \$M + \$B; commercial, retain heifers, retain ownership through finishing, market on grid
API	All Purpose Index	Simmental	\$/hd; Use in entire herd, retain heifers, grid marketing
TI	Terminal Index	Simmental	\$/hd; Use in mature cows, all progeny grade & yield

How Do We Use Them?

Production goal:

- Commercial AngusX cows, typically use Hereford sires
- Sell weaned calves
- Retain replacement heifers and AI, opens and late-breds sold
- Grazing range environment
- 1200 pound mature cow size

Priorities?

- Maternal focus → SC, SCF, MCW, MCE, US, TS
- Get paid on live calves and weaned pounds → CE, WW
- Potential for **limited inputs** → Milk, DMI, MCW
- BMI\$? \$/hd; Maternal+ SCF, WW, MCW, Milk, CW, MARB, REA; DMI

How Do We Use Them?

Priorities?

- Maternal focus → SC, SCF, MCW, MCE, US, TS
- Get paid on live calves and weaned pounds → CED, WW
- Potential for limited inputs → Milk, DMI, MCW
- BMI\$? \$/hd; Maternal+ SCF, WW, MCW, Milk, CW, MARB, REA; DMI

Sire	CED	BW	ww	YW	DMI	sc	SCF	MILK	M&G	MCE	MCW	US	TS	cw	FAT	REA	MARB	ВМІ	BII	СНВ
Α	9.7	-0.7	75	95	0.2	1.2	22.5	40	78	5.0	64	1.6	1.6	87	0.042	0.22	0.88	572	622	187
В	1.0	5.6	85	112	0.2	1.1	27.3	30	63	1.9	95	1.5	1.5	90	0.063	0.81	0.24	560	642	164
С	16	-1.6	67	84	0.5	1.6	20.4	29	63	13	101	1.5	1.6	72	0.033	0.76	0.31	480	510	142
D	9.5	0.7	65	98	0.6	1.6	22.7	34	67	11	89	1.5	1.5	85	0.056	0.92	0.56	420	608	168

Avg	3.4	2.6	56	89	0.2	1.0	17.0	27	55	1.6	88	1.2	1.3	71	0.023	0.45	0.14	364	439	121

Percentile Rankings

Where a bull ranks within the breed

American Hereford Association EPDs as of December 2, 2024 Pan American Hereford Cattle Evaluation

Average and	Percentile	Breakdown -	- Active Sires

		Product	tion		Fertility Maternal									Car	cass			\$ Indexes		
	CED	BW	ww	YW	DMI	SC	SCF	MM	M&G	CEM	MCW	UDDR	TEAT	cw	FAT	REA	MARB	BMI	BII	СНВ
Average	3.6	2.6	56	89	0.2	1.0	17.0	27	55	1.6	88	1.2	1.3	71	0.023	0.45	0.14	364	439	121
Low	-13.8	-9	-12	-33	-1.2	-0.7	-4.3	-8	-9	-15.3	-23	0.2	0.4	2	-0.107	-0.59	-0.53	66	116	14
High	23.7	11.2	91	153	2.5	3.0	35.6	64	90	16.8	174	2.0	2.0	131	0.163	1.46	1.36	653	778	251
									Percent	ile Breakdo	own									
Upper 1%	16.4	-4.7	80	130	-0.8	2.2	29.2	45	78	10.7	20	1.6	1.7	106	-0.057	1.10	0.69	566	668	196
2%	14.8	-3.2	77	125	-0.7	2.1	27.8	43	75	9.6	33	1.6	1.6	101	-0.047	1.01	0.60	542	644	184
3%	13.9	-2.1	75	122	-0.5	2.0	27.0	41	74	9.0	38	1.6	1.6	98	-0.037	0.96	0.54	526	625	178
4%	13.0	-1.5	74	119	-0.5	1.9	26.3	40	72	8.4	43	1.5	1.6	96	-0.037	0.91	0.49	517	611	173
5%	12.3	-1.1	73	117	-0.4	1.8	25.7	39	71	7.9	46	1.5	1.5	94	-0.027	0.89	0.45	506	602	170
10%	10.0	-0.1	69	111	-0.2	1.7	23.8	37	68	6.5	57	1.4	1.5	88	-0.017	0.78	0.36	475	564	155
15%	8.7	0.6	67	107	-0.1	1.5	22.5	35	66	5.6	64	1.4	1.4	85	-0.007	0.71	0.30	452	538	147
20%	7.7	1.0	65	104	-0.1	1.4	21.5	33	64	4.9	69	1.4	1.4	82	-0.007	0.65	0.26	434	517	141
25%	6.8	1.4	63	101	0.0	1.4	20.5	32	63	4.3	73	1.3	1.4	80	0.003	0.61	0.23	419	500	136
30%	6.1	1.7	62	99	0.0	1.3	19.8	31	61	3.7	77	1.3	1.3	78	0.003	0.58	0.21	406	485	132
35%	5.4	1.9	61	97	0.1	1.2	19.0	30	60	3.1	80	1.3	1.3	76	0.013	0.54	0.18	394	471	128
40%	4.7	2.2	59	95	0.1	1.2	18.3	29	59	2.6	83	1.3	1.3	75	0.013	0.51	0.16	383	459	124
45%	4.1	2.4	58	93	0.2	1.1	17.6	28	57	2.1	86	1.3	1.3	73	0.023	0.48	0.14	372	445	121
50%	3.5	2.7	57	91	0.2	1.0	17.0	27	56	1.6	89	1.2	1.3	71	0.023	0.45	0.12	362	434	118
55%	2.9	2.9	55	89	0.3	1.0	16.3	26	55	1.1	92	1.2	1.2	70	0.023	0.42	0.10	351	422	115
60%	2.3	3.1	54	87	0.3	0.9	15.6	25	53	0.6	95	1.2	1.2	68	0.033	0.39	0.08	341	411	112
65%	1.7	3.4	53	84	0.4	0.9	14.8	24	52	0.1	98	1.2	1.2	66	0.033	0.36	0.06	330	399	109
70%	1.0	3.6	51	82	0.4	0.8	14.1	23	50	-0.4	101	1.2	1.2	65	0.043	0.32	0.04	319	386	106
75%	0.2	3.9	50	80	0.5	0.7	13.3	22	49	-1.0	105	1.1	1.1	63	0.043	0.28	0.02	308	374	103
80%	-0.6	4.3	48	77	0.5	0.7	12.5	21	47	-1.7	109	1.1	1.1	61	0.053	0.24	-0.01	295	361	100
85%	-1.6	4.6	46	73	0.6	0.6	11.5	19	44	-2.5	113	1.1	1.1	58	0.053	0.19	-0.03	280	344	96
90%	-2.9	5.2	43	69	0.7	0.4	10.2	17	41	-3.5	119	1.0	1.0	54	0.063	0.13	-0.07	258	323	90
95%	-4.7	6.0	38	60	8.0	0.3	8.3	12	34	-4.8	127	1.0	1.0	48	0.083	0.02	-0.12	232	292	81
100%	-13.8	11.2	-12	-33	2.5	-0.7	-4.3	8	-9	-15.3	174	0.2	0.4	2	0.163	-0.59	-0.53	66	116	14

8,282 sires produced at least 10 calves since January 1, 2022

Sire	CED	BW	ww	YW	DMI	sc	SCF	MILK	M&G	МСЕ	MCW	US	TS	cw	FAT	REA	MARB	вмі	BII	СНВ
Α	9.7	-0.7	75	95	0.2	1.2	22.5	40	78	5.0	64	1.6	1.6	87	0.042	0.22	0.88	572	622	187
В	1.0	5.6	85	112	0.2	1.1	27.3	30	63	1.9	95	1.5	1.5	90	0.063	0.81	0.24	560	642	164
С	16	-1.6	67	84	0.5	1.6	20.4	29	63	13	101	1.5	1.6	72	0.033	0.76	0.31	480	510	142
D	9.5	0.7	65	98	0.6	1.6	22.7	34	67	11	89	1.5	1.5	85	0.056	0.92	0.56	420	608	168

Average an	d Percentile	Breakdown -	 Active Sires
------------	--------------	-------------	----------------------------------

		Product	ion		Fertility					Mate	ernal				Car	cass		\$ Indexes			
	CED	BW	ww	YW	DMI	SC	SCF	MM	M&G	CEM	MCW	UDDR	TEAT	cw	FAT	REA	MARB	ВМІ	BII	СНВ	
Average	3.6	2.6	56	89	0.2	1.0	17.0	27	55	1.6	88	1.2	1.3	71	0.023	0.45	0.14	364	439	121	
Low	-13.8	-9	-12	-33	-1.2	-0.7	-4.3	-8	-9	-15.3	-23	0.2	0.4	2	-0.107	-0.59	-0.53	66	116	14	
High	23.7	11.2	91	153	2.5	3.0	35.6	64	90	16.8	174	2.0	2.0	131	0.163	1.46	1.36	653	778	251	
									Percent	le Breakdo	own										
Upper 1%	16.4	-4.7	80	130	-0.8	2.2	29.2	45	78	10.7	20	1.6	1.7	106	-0.057	1.10	0.69	566	668	196	
2%	14.8	-3.2	77	125	-0.7	2.1	27.8	43	75	9.6	33	1.6	1.6	101	-0.047	1.01	0.60	542	644	184	
3%	13.9	-2.1	75	122	-0.5	2.0	27.0	41	74	9.0	38	1.6	1.6	98	-0.037	0.96	0.54	526	625	178	
4%	13.0	-1.5	74	119	-0.5	1.9	26.3	40	72	8.4	43	1.5	1.6	96	-0.037	0.91	0.49	517	611	173	
5%	12.3	-1.1	73	117	-0.4	1.8	25.7	39	71	7.9	46	1.5	1.5	94	-0.027	0.89	0.45	506	602	170	
10%	10.0	-0.1	69	111	-0.2	1.7	23.8	37	68	6.5	57	1.4	1.5	88	-0.017	0.78	0.36	475	564	155	
15%	8.7	0.6	67	107	-0.1	1.5	22.5	35	66	5.6	64	1.4	1.4	85	-0.007	0.71	0.30	452	538	147	
20%	7.7	1.0	65	104	-0.1	1.4	21.5	33	64	4.9	69	1.4	1.4	82	-0.007	0.65	0.26	434	517	141	
25%	6.8	1.4	63	101	0.0	1.4	20.5	32	63	4.3	73	1.3	1.4	80	0.003	0.61	0.23	419	500	136	
30%	6.1	1.7	62	99	0.0	1.3	19.8	31	61	3.7	77	1.3	1.3	78	0.003	0.58	0.21	406	485	132	
35%	5.4	1.9	61	97	0.1	1.2	19.0	30	60	3.1	80	1.3	1.3	76	0.013	0.54	0.18	394	471	128	
40%	4.7	2.2	59	95	0.1	1.2	18.3	29	59	2.6	83	1.3	1.3	75	0.013	0.51	0.16	383	459	124	
45%	4.1	2.4	58	93	0.2	1.1	17.6	28	57	2.1	86	1.3	1.3	73	0.023	0.48	0.14	372	445	121	
50%	3.5	2.7	57	91	0.2	1.0	17.0	27	56	1.6	89	1.2	1.3	71	0.023	0.45	0.12	362	434	118	
55%	2.9	2.9	55	89	0.3	1.0	16.3	26	55	1.1	92	1.2	1.2	70	0.023	0.42	0.10	351	422	115	
60%	2.3	3.1	54	87	0.3	0.9	15.6	25	53	0.6	95	1.2	1.2	68	0.033	0.39	0.08	341	411	112	
65%	1.7	3.4	53	84	0.4	0.9	14.8	24	52	0.1	98	1.2	1.2	66	0.033	0.36	0.06	330	399	109	
70%	1.0	3.6	51	82	0.4	8.0	14.1	23	50	-0.4	101	1.2	1.2	65	0.043	0.32	0.04	319	386	106	
75%	0.2	3.9	50	80	0.5	0.7	13.3	22	49	-1.0	105	1.1	1.1	63	0.043	0.28	0.02	308	374	103	
80%	-0.6	4.3	48	77	0.5	0.7	12.5	21	47	-1.7	109	1.1	1.1	61	0.053	0.24	-0.01	295	361	100	
85%	-1.6	4.6	46	73	0.6	0.6	11.5	19	44	-2.5	113	1.1	1.1	58	0.053	0.19	-0.03	280	344	96	
90%	-2.9	5.2	43	69	0.7	0.4	10.2	17	41	-3.5	119	1.0	1.0	54	0.063	0.13	-0.07	258	323	90	
95%	-4.7	6.0	38	60	0.8	0.3	8.3	12	34	-4.8	127	1.0	1.0	48	0.083	0.02	-0.12	232	292	81	
100%	-13.8	11.2	-12	-33	2.5	-0.7	-4.3	-8	-9	-15.3	174	0.2	0.4	2	0.163	-0.59	-0.53	66	116	14	

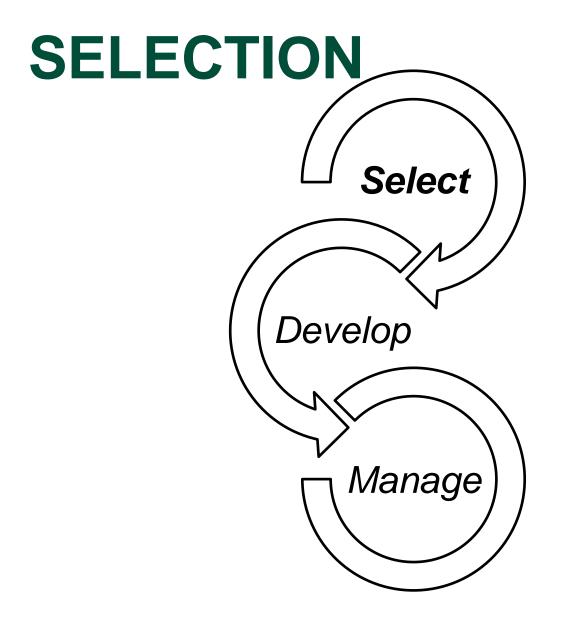
8,282 sires produced at least 10 calves since January 1, 2022

Remember...

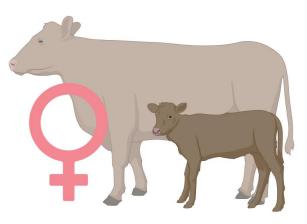
What Makes a Good Heifer?

One that becomes a good cow!

- Reproduction is 5X more valuable than calf growth
 - Live calves and longevity

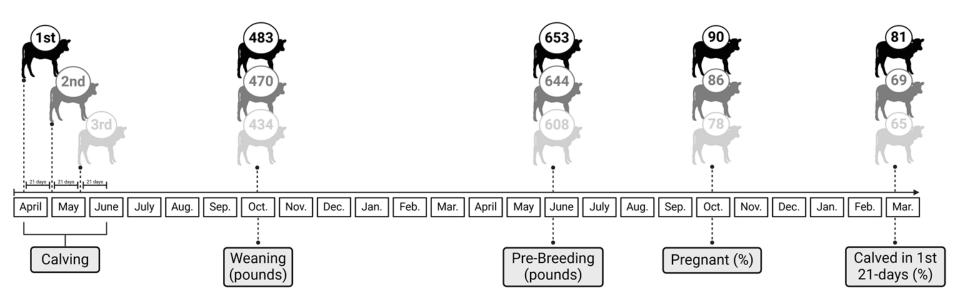

Trenkle and Wilham, 1977

Cow Depreciation:


= Replacement - Salvage

of productive years

History Repeats Itself



- Consider the cow
 - Dystocia
 - Calved late in the season
 - Failed to wean a calf
 - Teat/udder problems
 - Consistently weaned light calves
 - Attitude problems

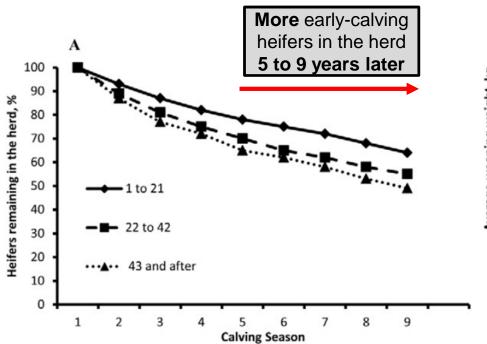
Non-negotiables:

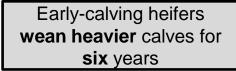
- Born in first 21 days of the calving season
- Born from cows 4+ years of age
- Born from cows that fit your desired phenotype

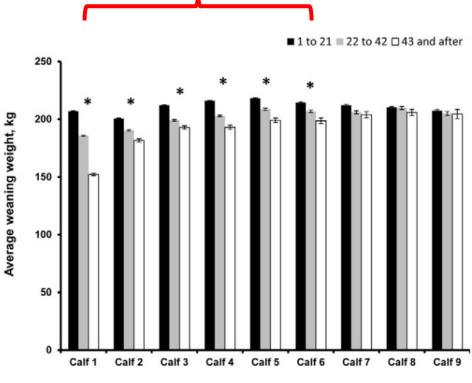
Early Born...Early Calving...

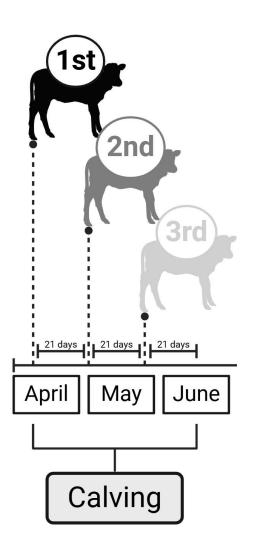
Heifers born in first 21-days are **heavier** at weaning and before breeding.

Heifers born in first 21-days have greater pregnancy rates and calve earlier.


Made in biorender.com
Adapted from Funston et al., 2012


Early Born...Early Calving...Stay Longer


More early born heifers calve early their first season


Cushman et al., 2013

Early Born...Early Calving...Stay Longer

- Heifer calves born or calving in first
 21-days of the calving season
 - Heavier
 - More likely to cycle prior to breeding
 - Greater pregnancy rates
 - More likely to calve in the first 21-days of their first calving season
 - Stay in the herd longer
 - Wean heavier calves for six years

More live calves and greater longevity

MORE PROFITABLE

Questions?

Lacey Quail
North Central Research Extension Center, Minot, ND
(701) 831-0414 ● lacey.quail@ndsu.edu