College of Agricultural, Consumer and Environmental Sciences

BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

Supplementation Strategies for Range Cattle in NM

Cow Requirements
 Craig Gifford, Extension Beef Cattle Specialist

College of Agricultural, Consumer and Environmental Sciences

All About Discovery! ${ }^{\text {m }}$
New Mexico State University
aces.nmsu.edu

Importance of Minerals

About the College: The College of Agricultural, Consumer and Environmental Sciences is an engine for economic and community development in New Mexico, improving the lives of New Mexicans through academic, research, and extension programs.

Macro vs. Micro

- Micro minerals are present in small amounts in the body.
- chromium, cobalt, copper, fluorine, iodine, iron, manganese, molybdenum, selenium, and zinc
- Macro minerals are present in large amounts in the body.
- calcium, chlorine, magnesium, phosphorus, potassium, sodium, and sulfur

Minerals of concern and interactions

- Ca: Mn, Se, and Zn
- 0.5\% Ca reduced serum Zn (Perry et al., 1968)
- $\mathrm{Fe}: \mathrm{Cu}$ and Mn
- Zn : Cu
- $\mathrm{S}: \mathrm{Cu}$ and Se
hape the Future.
o State University
edu

Mineral requirements based on stage of production, maximum tolerable levels and the greatest impact on performance in beef cattle. ${ }^{\text {a }}$

	Growing- Finishing	Gestating Dry Cows	Lactating Cows			
Mineral	BW $\mathbf{6 5 0}$ lbs	BW $\mathbf{1 , 2 5 0}$ lbs	BW $\mathbf{1 , 2 0 0}$ lbs	Max. Tolerable	Performance Impacted	
Ca, \%	0.31	0.18	0.27	1.8	Growth	
P, \%	0.27	0.18	0.27	0.3	Growth	
Na, \%	0.07	0.07	0.10	4.0	Milk Prod.	
CI, \%	-	-	-	4.0	Milk Prod.	
Mg, \%	0.10	0.12	0.20	0.40	Growth	
S,\%	0.15	0.15	0.15	0.40	Growth	
K, \%	0.60	0.60	0.70	3.0	Reprod.	
Co, ppm	0.10	0.10	0.10	10.0	Growth	
Cu,ppm	10.0	10.0	10.0	100.0	Growth	
I, ppm	0.50	0.50	0.50	50.0	Milk Prod.	
Mn, pm	20.0	40.0	40.0	1000.0	Reprod.	
Se, pm	0.10	0.10	0.10	2.0	Immunity	
Zn, ppm	30.0	30.0	30.0	500.0	Immunity	

${ }^{a}$ Requirements based on values provided by NRC, 2000, and expressed in concentration (\% or ppm).

NM forage macromineral content

Low High

NM forage micromineral content

■ Low ■ High

Cow macromineral supply d 60 of gestation

 $■$ Req ■ Supply

Cow micromineral supply d 60 of gestation

 \square Req ■ Supply

Cu
Mn
Se
Zn

College of Agricultural, Consumer and Environmental Sciences

All About Discovery! ${ }^{\text {m }}$
New Mexico State University
aces.nmsu.edu

Minerals are deficient; now what?

About the College: The College of Agricultural, Consumer and Environmental Sciences is an engine for economic and community development in New Mexico, improving the lives of New Mexicans through academic, research, and extension programs.

Supplementation: Free Choice - Blocks

- Blue, red, white, yellow...

Supplementation: Free

 Choice- Reputable bagged mineral

MINERAL/VITAMIN
LEVEL
Calcium (Ca), min 13.00\%
Calcium (Ca), max 15.00\%
Phosphorus (P), min 4.00\%
Salt (NaCl), min 16.50\%
Salt (NaCl), max 18.50\%
Magnesium (Mg), min 10.00\%
Potassium (K), min 0.10\%
Zinc (Zn), min 3,600 PPM
Manganese (Mn), min 3,600 PPM
Copper (Cu), min 1,200 PPM
Cobalt (Co), min 12 PPM
Iodine (I), min 60 PPM
Selenium (Se), min 27 PPM
Vitamin A, min 75,000 IU/LB
Vitamin D, min 7,500 IU/LB

Comparing

- PPM vs \%
- 0.1\% = 1000 ppm
- Example: Block Mg 2,400 ppm
Bag Mg 10\% = 100,000 ppm

Blocks are mostly salt

What About Organic?

- Mineral is chelated to increase availability
- "More digestible or absorbable"
- In general, unless you have a problem, you don't need to spend the money

Injectable

- Bypasses digestive system so absorption is not an issue
- Good way to rapidly increase mineral status in deficient cattle
- Improve mineral status in cattle not supplemented or not eating mineral
- If cattle consuming good mineral?

General Guidelines

- Provide free choice bagged mineral
- Tubs: mineral specific
- Provide near water supplies
- Monitor intake
- 50 pounds $=800$ oz
- 10 cows x 2 oz/day = 20 oz/day
- For every 10 cows, 1 bag should last about 40 days

College of Agricultural, Consumer and Environmental Sciences

BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

Nutritional Considerations

What do we need to know?

- When do we calve?
- When does breeding season start?
-When do we wean?
- Who are we feeding?
- What are their needs?

Major Considerations

- Amount of feed available
- Crude protein (CP) content of diet
- Energy (TDN) available from the diet
- Current condition of the herd

Requirements aren't the same

- Heifers (growing and puberty)
- $2 s$ and $3 s$ (growing, gestating, and lactating, breed back)
- Middle-aged cows
- Old cows

Cow Dry Matter Intake Requirements

Cow CP Requirement

Cow TDN Requirement

Nutrient requirements for 600 lb replacement heifer

Pregnant Heifer CP requirements

Pregnant Heifer TDN requirements

Cow CP Requirement and average forage quality

Cow CP Requirement and high-quality forage

CP requirement and low-quality forage

Lack of Protein

- Insufficient protein can also lead to reduced energy
- Remember, you are feeding microbes!

Figure 1. Forage dry matter (DM) intake relative to the forage crude protein (CP) content.

Supplement decision guide

Does cow have all she can eat in pasture?

Supplement decision guide

Does cow have all she can eat in pasture?

NO

- Forage supply is inadequate; energy deficient
- Reduce the forage needs of herd by lowering stocking rate and/or feeding supplement

Supplement decision guide

Does cow have all she can eat in pasture?

NO

What color is forage?

Brown

- Supplement with 20-28\% CP
- 0.3 to 0.5% BW/day
- Energy is deficient
- Protein is likely $<7 \%$, limits digestion
- Consider \$/lb CP and \$/lb TDN
- IF forage shortage is severe Supplement with <20\%CP
- 0.4 to 0.8\% BW/day
- Price \$/lb TDN

Green

- Supplement energy with < 20\% CP
- 0.4\% to 0.8\% BW/day
- Protein is sufficient
- Energy is deficient
- Price \$/Ib TDN

Supplement decision guide

Does cow have all she can eat in pasture?

YES

What color is forage?

Brown

- Protein is likely $\mathbf{< 7 \%}$, limits intake and digestion

Supplement decision guide

Does cow have all she can eat in pasture?

YES

What color is forage?
Brown

- Protein is likely $\mathbf{< 7 \%}$, limits intake and digestion

> Are cows in adequate body condition (BCS >4.5)

Supplement decision guide

Does cow have all she can eat in pasture?

YES

What color is forage?
Brown

Are cows in adequate body condition (BCS >4.5)

- Supplement with > 32\% CP
- 0.1 to 0.3\% BW/day
- Improves rumen efficiency
- Price \$/lb CP
- Supplement with 28 to 32\% CP
- 0.25 to 0.4% BW/day
- Improves rumen efficiency
- Provides extra energy
- Price $\$ / \mathrm{lb}$ CP and $\$ / \mathrm{lb}$ TDN

Mineral requirements based on stage of production, maximum tolerable levels and the greatest impact on performance in beef cattle. ${ }^{\text {a }}$

	Growing- Finishing	Gestating Dry Cows	Lactating Cows			
Mineral	BW $\mathbf{6 5 0}$ lbs	BW $\mathbf{1 , 2 5 0}$ lbs	BW $\mathbf{1 , 2 0 0}$ lbs	Max. Tolerable	Performance Impacted	
Ca, \%	0.31	0.18	0.27	1.8	Growth	
P, \%	0.27	0.18	0.27	0.3	Growth	
Na, \%	0.07	0.07	0.10	4.0	Milk Prod.	
CI, \%	-	-	-	4.0	Milk Prod.	
Mg, \%	0.10	0.12	0.20	0.40	Growth	
S,\%	0.15	0.15	0.15	0.40	Growth	
K, \%	0.60	0.60	0.70	3.0	Reprod.	
Co, ppm	0.10	0.10	0.10	10.0	Growth	
Cu,ppm	10.0	10.0	10.0	100.0	Growth	
I, ppm	0.50	0.50	0.50	50.0	Milk Prod.	
Mn, pm	20.0	40.0	40.0	1000.0	Reprod.	
Se, pm	0.10	0.10	0.10	2.0	Immunity	
Zn, ppm	30.0	30.0	30.0	500.0	Immunity	

${ }^{a}$ Requirements based on values provided by NRC, 2000, and expressed in concentration (\% or ppm).

CNIVITIVM, FRINLLLL
P.O. BOX 1264

CROWNPOINT, NM 87313
ANALYSIS

	Dry Basis	As Received	
Moisture		6.34	\%
Dry Matter .		93.66	\%
Protein, Crude	2.86	2.68	\%
ADF-Acid Detergent Fiber	41.93	39.27	\%
NEL: Net Energy-Lactation	0.46	0.43	Mcal/lb
NEG: Net Energy-Gain .	0.13	0.12	Mcal/b
NEM: Net Energy-Maintenance	0.37	0.35	Mcal/lb
TDN: Total Digestible Nutrients	45.94	43.03	\%
Calcium	0.45	0.42	\%
Phosphorus	Less than 0.01		\%
Potassium.	0.15	0.14	\%
Magnesium	0.06	0.06	\%
Sodium .	Less than 0.01		\%
Sulfur	0.10	0.09	\%
Aluminum	1320.00	1236.31	ppm
Cobalt.	2.04	1.91	ppm
Copper	7.40	6.93	ppm
Iron.	784.00	734.29	ppm
Manganese	36.40	34.09	ppm
Molybdenum .	2.85	2.67	ppm
Zinc	9.38	8.79	ppm

BE BOLD. Shape the Future.
New Mexico State University
aces.nmsu.edu

```
LANTANA, MIKELLE
P.O. BOX }126
CROWNPOINT, NM }8731
```

ANALYSIS

	Dry Basis	As Received	
Moisture		7.07	\%
Dry Matter		92.93	\%
Protein, Crude .	2.87	2.67	\%
ADF-Acid Detergent Fiber	41.76	38.81	\%
NEL: Net Energy-Lactation	0.46	0.43	Mcal/lb
NEG: Net Energy-Gain .	0.13	0.12	Mcal/b
NEM: Net Energy-Maintenance	0.38	0.35	Mcal/b
TDN: Total Digestible Nutrients	46.17	42.91	\%
Calcium	0.18	0.17	\%
Phosphorus	Less than 0.01		\%
Potassium	0.32	0.30	\%,
Magnesium .	0.04	0.04	\%
Sodium .	0.02	0.02	\%
Sulfur	0.06	0.06	\%
Aluminum	250.00	232.33	ppm
Cobalt	0.78	0.72	ppm
Copper	4.61	4.28	ppm
Iron.	190.00	176.57	ppm
Manganese	32.80	30.48	ppm
Molybdenum .	1.37	1.27	ppm
Zinc. .	8.84	8.22	ppm

> LANTANA, MIKELLE P.O. BOX 1264
> CROWNPOINT, NM 87313

ANALYSIS

	Dry Basis	As Received	
Moisture		7.07	\%
Dry Matter .		92.93	\%
Protein, Crude .	2.87	2.67	\%
ADF-Acid Detergent Fiber	41.76	38.81	\%
NEL: Net Energy-Lactation	0.46	0.43	Mcal/lb
NEG: Net Energy-Gain.	0.13	0.12	Mcal/b
NEM: Net Energy-Maintenance .	0.38	0.35	Mcal/lb
TDN: Total Digestible Nutrients	46.17	42.91	\%
Calcium	0.18	0.17	\%
Phosphorus.	Less than 0.01		\%
Potassium .	0.32	0.30	\%
Magnesium .	0.04	0.04	\%
Sodium...	0.02	0.02	\%
Sulfur	0.06	0.06	\%
Aluminum	250.00	232.33	ppm
Cobalt	0.78	0.72	ppm
Copper	4.61	4.28	ppm
Iron.	190.00	176.57	ppm
Manganese .	32.80	30.48	ppm
Molybdenum .	1.37	1.27	ppm
Zinc. . .	8.84	8.22	ppm

Female Requirements, \%

	DMI	CP	TDN	ME	NEm	$C a$	P
	lb	$\%$	$\%$	Mcal/d	Mcal/d	$\%$	$\%$
\%EIFER 1200 lb Mature BW 10 lb of milk							
First	19.8	7.2	50.6	0.46	0.21	7.19	0.18
Second	21.5	7.4	51.5	0.48	0.23	7.35	0.17
Third	23.7	8.7	56.6	0.56	0.30	8.68	0.22

COW 1200 lb mature BW 10 lb of milk

First	25.2	7.4	52.2	0.87	0.49	7.35	0.17
Second	24.1	6.2	45.9	0.77	0.39	6.22	0.12
Third	24.2	7.8	52.6	0.88	0.49	7.84	0.16
Lactation/breeding	25.1	8.5	55.0	0.92	0.53	8.45	0.20

COW 1200 lb mature BW 20 lb of milk

First	26.5	8.6	54.8	0.91	0.53	0.24	0.17
Second	24.1	6.2	45.9	0.77	0.39	0.15	0.12
Third	24.2	7.8	52.6	0.88	0.49	0.25	0.16
Lactation/breeding	27.7	10.2	58.7	0.98	0.59	0.3	0.20

Female Requirements, Ib

	DMI	CP	TDN	ME	NEm	Ca	P
HEIFER 1200 lb mature BW 10 lb of milk	lb / d	lb / d	lb / d	$\mathrm{Mcal} / \mathrm{d}$	$\mathrm{Mcal} / \mathrm{d}$	lb / d	lb / d

COW 1200 lb mature BW 10 lb of milk

First	25.2	1.85	13.13	21.90	12.33	0.050	0.036
Second	24.1	1.50	11.07	18.48	9.32	0.036	0.029
Third	24.2	1.90	12.74	21.23	11.95	0.061	0.039
Lactation/breeding	25.1	2.12	13.80	23.08	13.38	0.060	0.042

COW 1200 lb mature BW 20 lb of milk

First	26.5	2.28	14.54	24.25	13.01	0.064	0.039
Second	24.1	1.50	11.07	18.48	9.32	0.036	0.032
Third	24.2	1.90	12.74	21.23	11.95	0.061	0.039
Lactation/breeding	27.7	2.83	16.25	27.11	14.75	0.082	0.054

Female Requirements, lb

COW 1200 lb mature BW 10 lb of milk

First	25.2	1.85	3.4	2.1
Second	24.1	1.50	1.6	1.0
Third	24.2	1.90	3.7	2.3
Lactation/breeding	25.1	2.12	4.8	3.0

COW 1200 lb mature BW 20 lb of milk

First	26.5	2.28	5.7	3.6
Second	24.1	1.50	1.6	1.0
Third	24.2	1.90	3.7	2.3
Lactation/breeding	27.7	2.83	8.6	5.4

Female Requirements, lb

DMI	CP	20%	32%
lb/d	lb/d	feed lb/d feed lb/d	

HEIFER 1200 lb mature BW 10 lb of milk

First	19.8	1.42	4.3	2.8
Second	21.5	1.58	4.8	3.2
Third	23.7	2.06	6.9	4.6

COW 1200 lb mature BW 10 lb of milk

First	25.2	1.85	5.6	3.8
Second	24.1	1.50	4.1	2.7
Third	24.2	1.90	6.0	4.0
Lactation/breeding	25.1	2.12	7.0	4.7

COW 1200 lb mature BW 20 lb of milk

First	26.5	2.28	7.6	5.1
Second	24.1	1.50	4.1	2.7
Third	24.2	1.90	6.0	4.0
Lactation/breeding	27.7	2.83	10.2	6.8

New Mexico State University

Female Requirements, Ib

	DMI	CP Ib/d Ib/d	TDN Ib/d	Supplied $\mathrm{lb} / \mathrm{day}$
HEIFER 1200 lb mature BW 10 lb of milk				9.1
First	19.8	1.42	10.01	9.9
Second	21.5	1.58	11.10	10.9
Third	23.7	2.06	13.44	
COW 1200 lb mature BW 10 lb of milk				
First	25.2	1.85	13.13	11.6
Second	24.1	1.50	11.07	11.1
Third	24.2	1.90	12.74	11.1
Lactation/breeding	25.1	2.12	13.80	11.5

COW 1200 lb mature BW 20 lb of milk

First	26.5	2.28	14.54	12.2
Second	24.1	1.50	11.07	11.1
Third	24.2	1.90	12.74	11.1
Lactation/breeding	27.7	2.83	16.25	12.7

College of Agricultural, Consumer and Environmental Sciences

BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

Water Contributions

Suboptimal Water Intake

- We often think of lack of water as severe dehydration
- Try to think about water like other aspects of production. There is an optimum and intake that is less than optimum will result in varied physiological responses
- Relative to water, dry matter intake is significantly impacted by "water quality"

Water Quality and Intake

Table 2. Intake and performance of growing steers supplied water with various total dissolved solid and sulfate levels in western South Dakota (Least Squares Mean) ${ }^{\text {a }}$

Item	Total Dissolved Solid/Sulfate Level, ppm				SEM
	1,226/441	2,933/1,725	4,720/2,919	7,268/4,654	
Initial Weight, lb	642	640	640	639	2
Final Weight, $\mathrm{lb}^{\text {b }}$	827	812	794	710	5
ADG, lb/d ${ }^{\text {b }}$	1.78	1.65	1.48	0.61	0.11
DM Intake, lb/d ${ }^{\text {b }}$	20.79	20.62	18.95	13.18	0.95
Gain/Feed ${ }^{\text {b }}$	0.086	0.080	0.078	0.045	0.005
Water Intake, gallons/d ${ }^{\text {c }}$	15.04	13.43	11.97	9.53	0.62

[^0]
Intake, ADG, and Gain/Feed declined with increasing TDS/Sulfate concentrations!

Management Considerations:
 Drought

- Water from forage
- Assume cow requires 24 lbs DM
- $88 \% \mathrm{DM}=$ consume 27 lbs forage $=3.34 \mathrm{lbs} \mathrm{H} 2 \mathrm{O}(1 / 2$ gallon)
- $60 \% \mathrm{DM}=$ consume 40 lbs forage $=16 \mathrm{lbs} \mathrm{H} 20$ (1.5-2.0 gallons)
- Cows grazing green forage can obtain up to 8 gallons water from grazing alone (Ted McCollum)

College of Agricultural, Consumer and Environmental Sciences

BE BOLD. Shape the Future. New Mexico State University

Acknowledgements: Shad Cox
Dr. Eric Scholljegerdes
Dr. Marcy Ward
Corona Range and Livestock Research Center

Questions?

Craig Gifford
Extension Beef Cattle Specialist
Department of Extension Animal Sciences and Natural Resources
New Mexico State University
P.O. Box 3000, MSC 3AE
Las Cruces, NM 88003
cgifford@nmsu.edu
Phone: 575-646-6482

[^0]: ${ }^{\text {a }}$ Cattle fed a consistent diet ($0.97 \mathrm{Mcal} / \mathrm{kg}$ NEg) and provided various water for 104 days during the summer.
 ${ }^{\mathrm{b}}$ Measurements declined quadratically with increasing total dissolved solids and with increasing sulfates ($P<0.05$).
 ${ }^{\text {cheas }}$ Mearements declined linearly with increasing total dissolved solids and with increasing sulfates ($P<0.01$).

