College of Agricultural, Consumer and Environmental Sciences

BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

Supplementation Strategies for Range Cattle in NM

Cow Requirements Craig Gifford, Extension Beef Cattle Specialist

The College of Agricultural, Consumer and Environmental Sciences is an engine for economic and community development in New Mexico, improving the lives of New Mexicans through academic, research, and Extension programs.

College of Agricultural, Consumer and Environmental Sciences

All About Discovery!™ New Mexico State University aces.nmsu.edu

Importance of Minerals

About the College: The College of Agricultural, Consumer and Environmental Sciences is an engine for economic and community development in New Mexico, improving the lives of New Mexicans through academic, research, and extension programs.

Macro vs. Micro

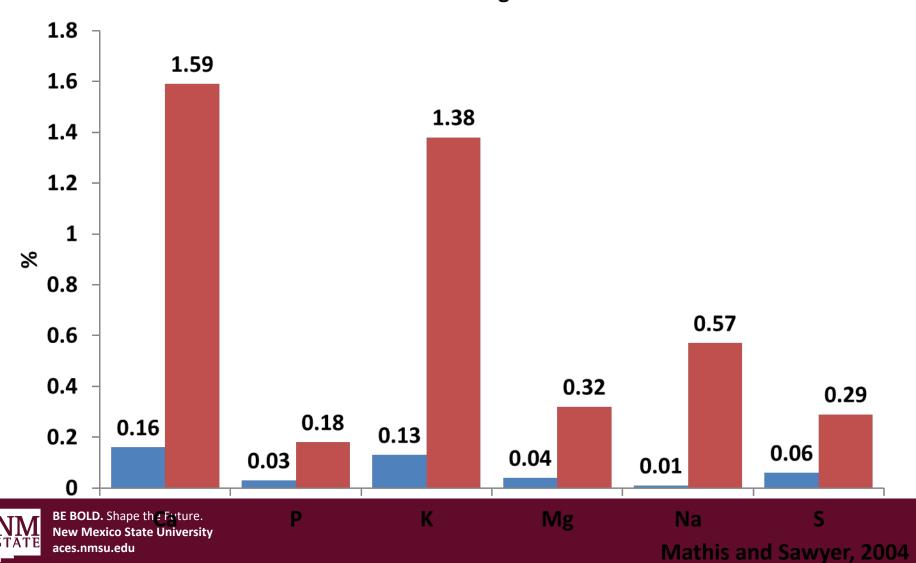
- Micro minerals are present in small amounts in the body.
 - chromium, cobalt, copper, fluorine, iodine, iron, manganese, molybdenum, selenium, and zinc
- Macro minerals are present in large amounts in the body.
 - calcium, chlorine, magnesium, phosphorus, potassium, sodium, and sulfur

Minerals of concern and interactions

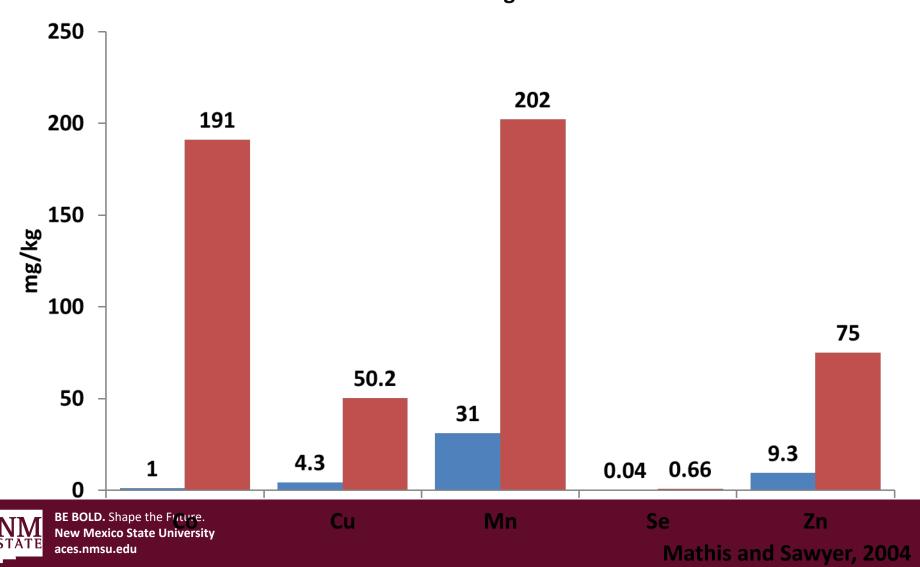
- Ca: Mn, Se, and Zn
 - 0.5% Ca reduced serum Zn (Perry et al., 1968)
- Fe: Cu and Mn
- Zn: Cu
- S: Cu and Se

hape the Future. o State University edu

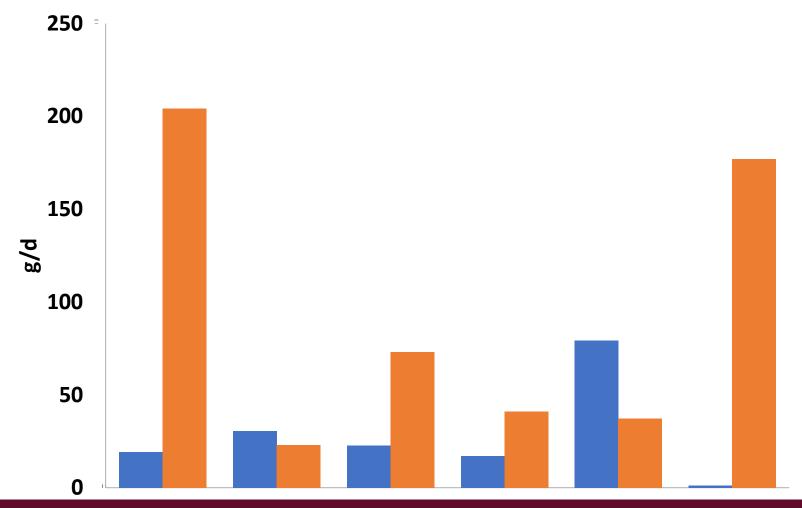
Mineral requirements based on stage of production, maximum tolerable levels and the greatest impact on performance in beef cattle.^a


	Growing- Finishing BW 650 lbs	Gestating Dry Cows BW 1,250 lbs	Lactating Cows BW 1,200 lbs		
Mineral				Max. Tolerable	Performance Impacted
Ca, %	0.31	0.18	0.27	1.8	Growth
P , %	0.27	0.18	0.27	0.3	Growth
Na, %	0.07	0.07	0.10	4.0	Milk Prod.
Cl, %	_	—	_	4.0	Milk Prod.
Mg, %	0.10	0.12	0.20	0.40	Growth
S, %	0.15	0.15	0.15	0.40	Growth
K, %	0.60	0.60	0.70	3.0	Reprod.
Co, ppm	0.10	0.10	0.10	10.0	Growth
Cu, ppm	10.0	10.0	10.0	100.0	Growth
l, ppm	0.50	0.50	0.50	50.0	Milk Prod.
Mn, pm	20.0	40.0	40.0	1000.0	Reprod.
Se, pm	0.10	0.10	0.10	2.0	Immunity
Zn, ppm	30.0	30.0	30.0	500.0	Immunity

^a Requirements based on values provided by NRC, 2000, and expressed in concentration (% or ppm).

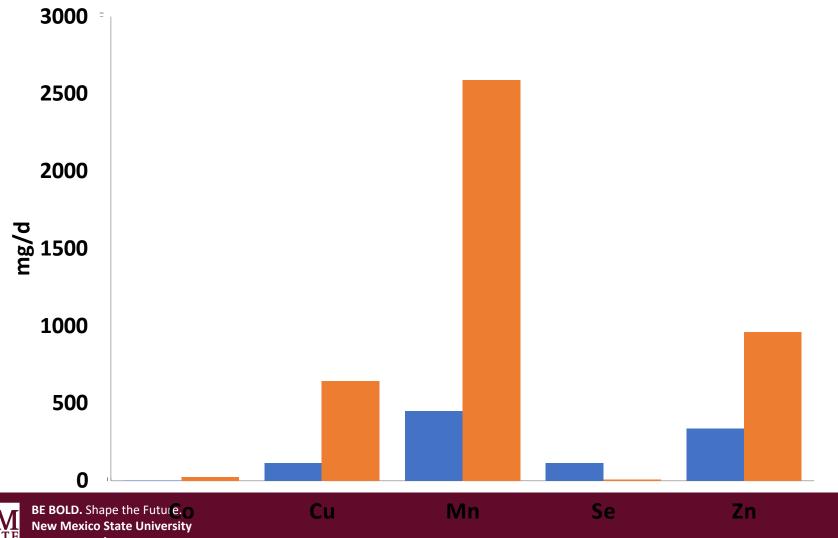

NM forage macromineral content

Low High


NM forage micromineral content

🗖 Low 📕 High

Cow macromineral supply d 60 of gestation


Req Supply

Cow micromineral supply d 60 of gestation

Req Supply

aces.nmsu.edu

College of Agricultural, Consumer and Environmental Sciences

All About Discovery!™ New Mexico State University aces.nmsu.edu

Minerals are deficient; now what?

About the College: The College of Agricultural, Consumer and Environmental Sciences is an engine for economic and community development in New Mexico, improving the lives of New Mexicans through academic, research, and extension programs.

Supplementation: Free Choice • Blocks

• Blue, red, white, yellow...

	S OF BEET A	DAIRY CATTLE, PIGS AND	
	GUARANTEI	D ANNO Max	380 ppm
	96.0%	Copper (Co) man	320 ppm
alt (NaCI) Min	99.0%	Zinc (Zn) Min	70 ppm
alt (NaCI) Max	2,400 ppm	Iodine (I) Min	40 ppm
Manganese (Mn) Min	2,400 ppm	Cobalt (Co) Min	
ron (Fe) Min	mag 0.3c		
Cooper (Cu) Min	A THAT EFFD CO	NTAINS COPPER	
INGREDIENTS Salt, Manganous Oxid Tinc Oxide, Calcium Id		ite, Magnesium Oxide, Copp nate, Red Iron Oxide for Co	per Oxide, lor

Supplementation: Free GUARANTEED ANALYSIS: Choice

 Reputable bagged mineral

Calcium (Ca), min	
Calcium (Ca), max	
Phosphorus (P), min	4.00%
Salt (NaCl), min	
Salt (NaCl), max	
Magnesium (Mg), min	
Potassium (K), min	0.10%
Zinc (Zn), min	3,600 PPM
Manganese (Mn), min	3,600 PPM
Copper (Cu), min	1,200 PPM
Cobalt (Co), min	12 PPM
Iodine (I), min	60 PPM
Selenium (Se), min	27 PPM

Vitamin E, min.....75 IU/LB

Comparing

- PPM vs %
- 0.1% = 1000 ppm
- Example: Block Mg 2,400 ppm

Bag Mg 10% = 100,000 ppm

Blocks are mostly salt

What About Organic?

- Mineral is chelated to increase availability
- "More digestible or absorbable"
- In general, unless you have a problem, you don't need to spend the money

Injectable

- Bypasses digestive system so absorption is not an issue
- Good way to rapidly increase mineral status in deficient cattle
- Improve mineral status in cattle not supplemented or not eating mineral
- If cattle consuming good mineral?

General Guidelines

- Provide free choice bagged mineral
 - Tubs: mineral specific
- Provide near water supplies
- Monitor intake
- 50 pounds = 800 oz
 - 10 cows x 2 oz/day = 20 oz/day
 - For every 10 cows, 1 bag should last about 40 days

College of Agricultural, Consumer and Environmental Sciences

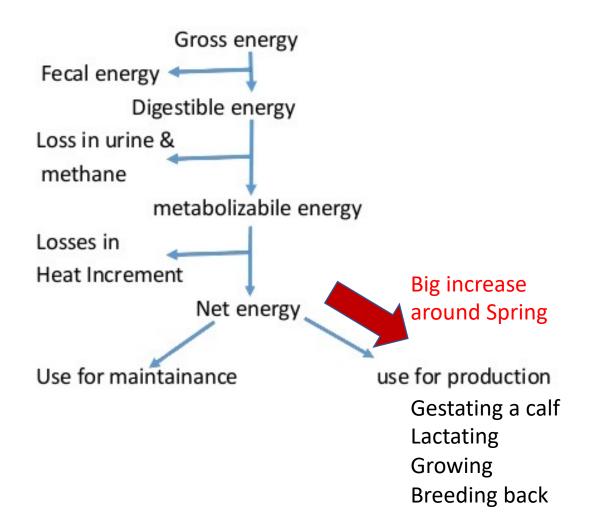
BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

Nutritional Considerations

The College of Agricultural, Consumer and Environmental Sciences is an engine for economic and community development in New Mexico, improving the lives of New Mexicans through academic, research, and Extension programs.

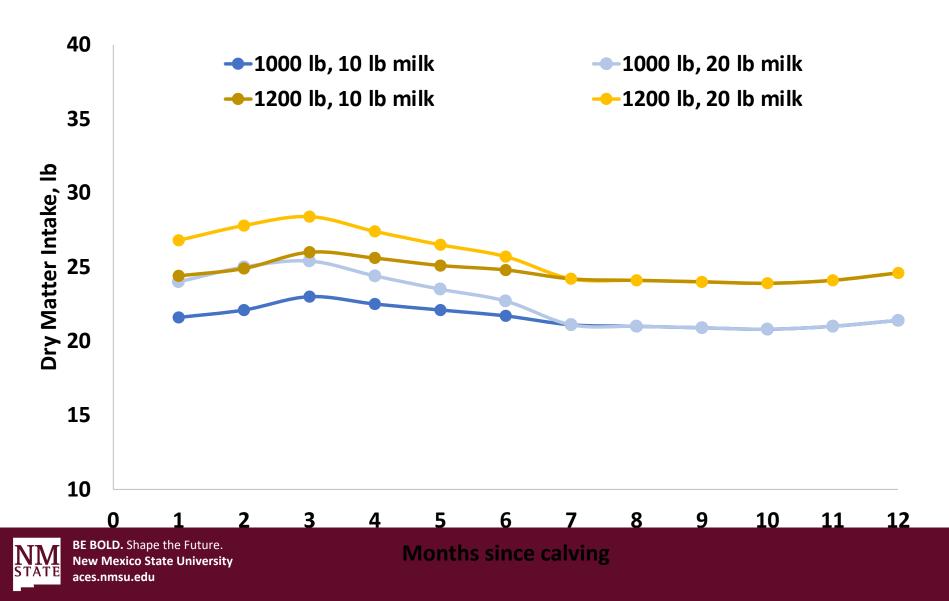
What do we need to know?

- When do we calve?
- When does breeding season start?
- When do we wean?
- Who are we feeding?
- What are their needs?

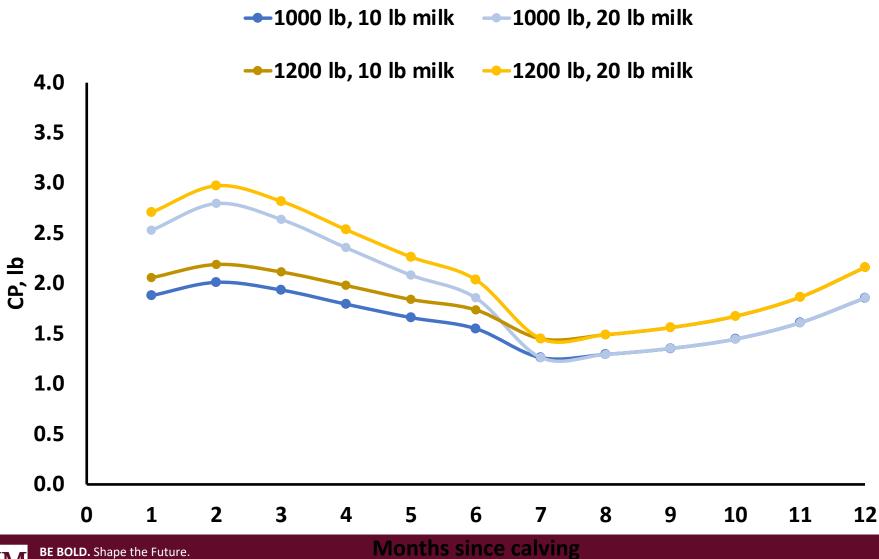


Major Considerations

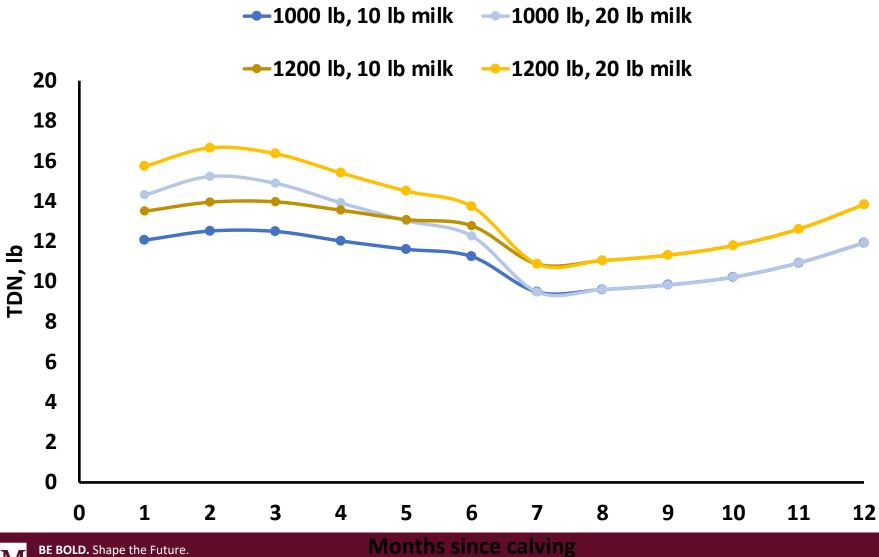
- Amount of feed available
- Crude protein (CP) content of diet
- Energy (TDN) available from the diet
- Current condition of the herd


Requirements aren't the same

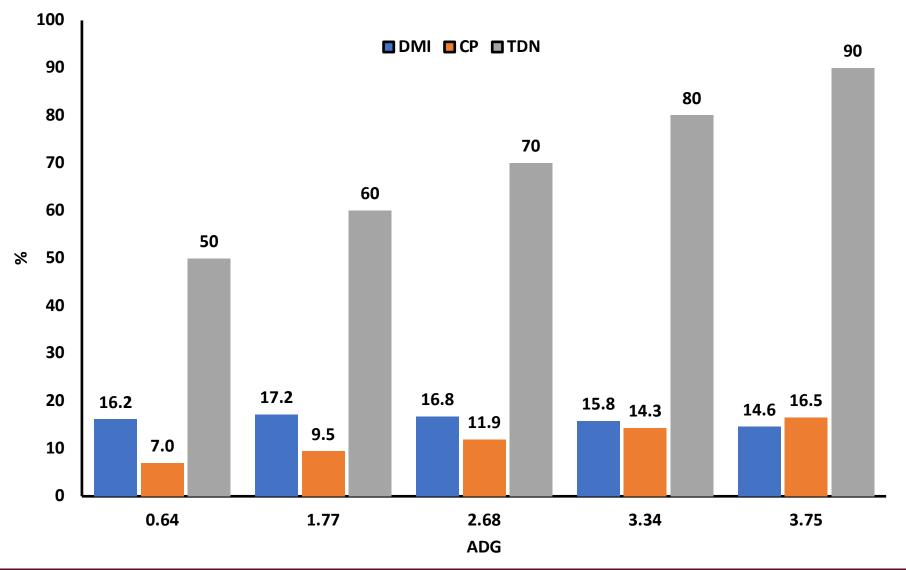
- Heifers (growing and puberty)
- 2s and 3s (growing, gestating, and lactating, breed back)
- Middle-aged cows
- Old cows



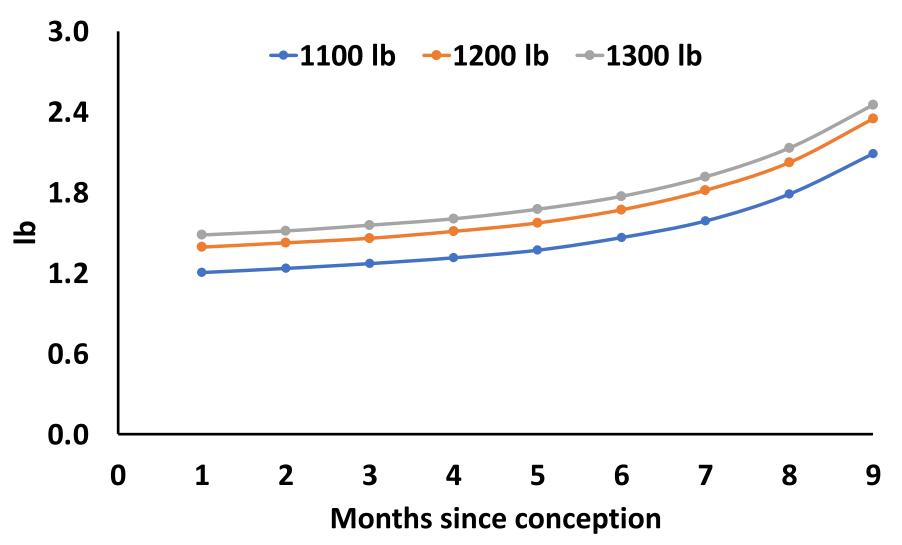
Cow Dry Matter Intake Requirements



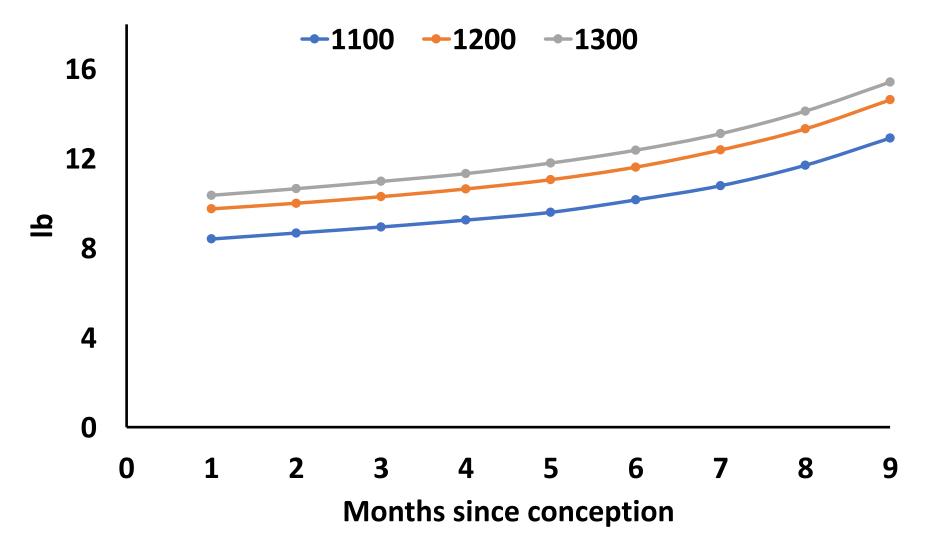
Cow CP Requirement



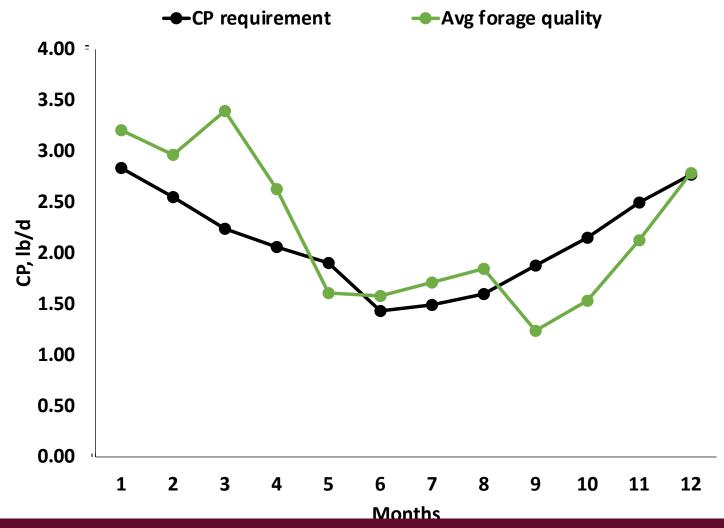
Cow TDN Requirement


NM STATE aces.nn

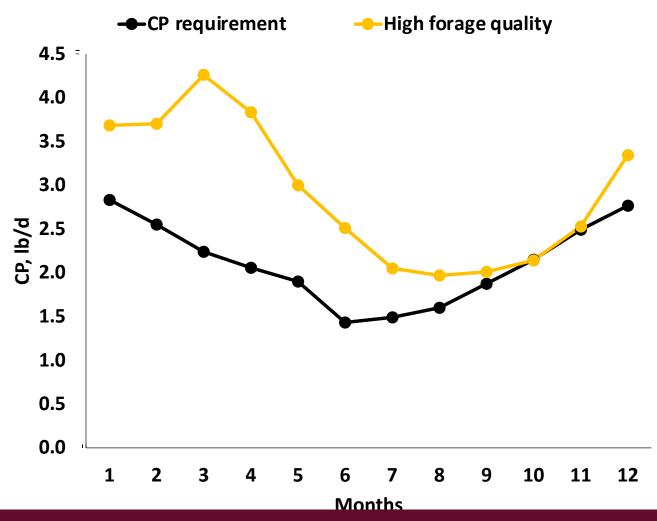
Nutrient requirements for 600 lb replacement heifer



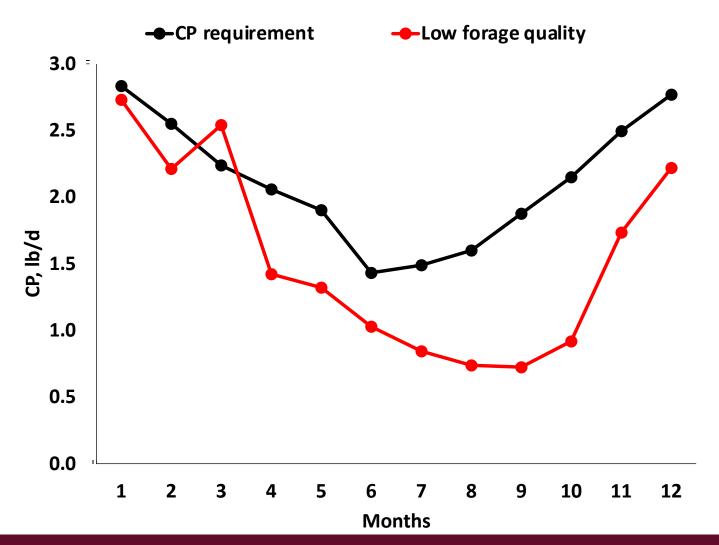
Pregnant Heifer CP requirements



Pregnant Heifer TDN requirements



Cow CP Requirement and average forage quality



Cow CP Requirement and high-quality forage

CP requirement and low-quality forage

Lack of Protein

- Insufficient protein can also lead to reduced energy
- Remember, you are feeding microbes!

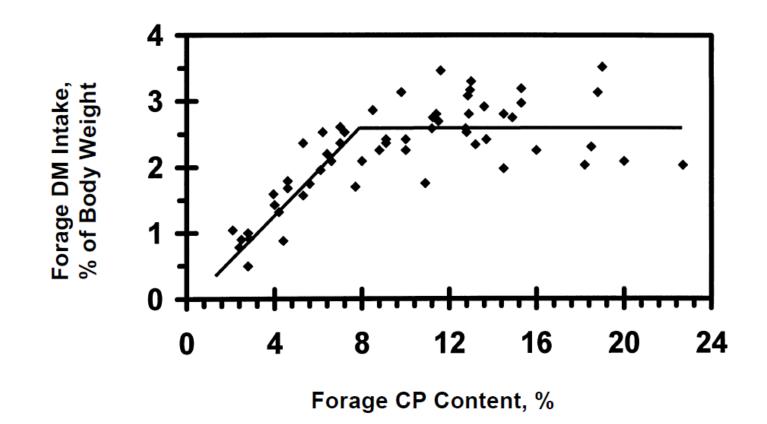
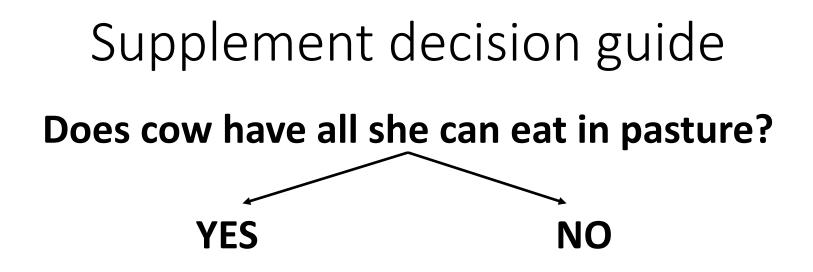
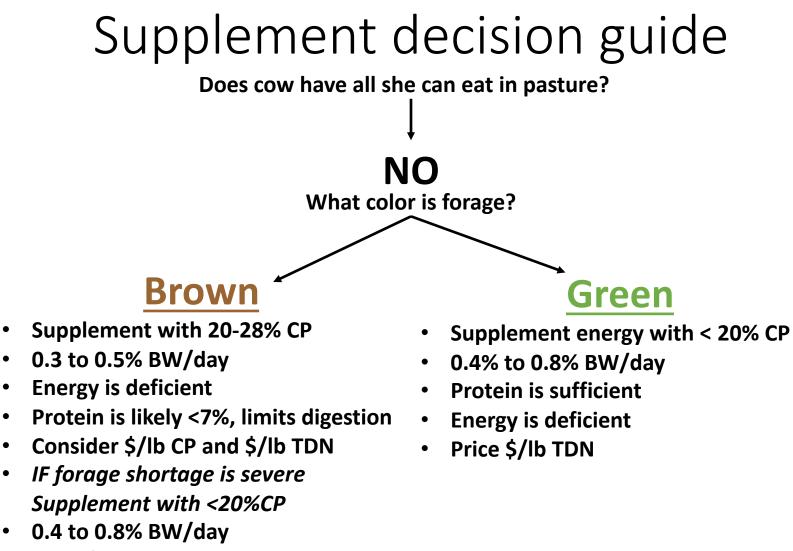



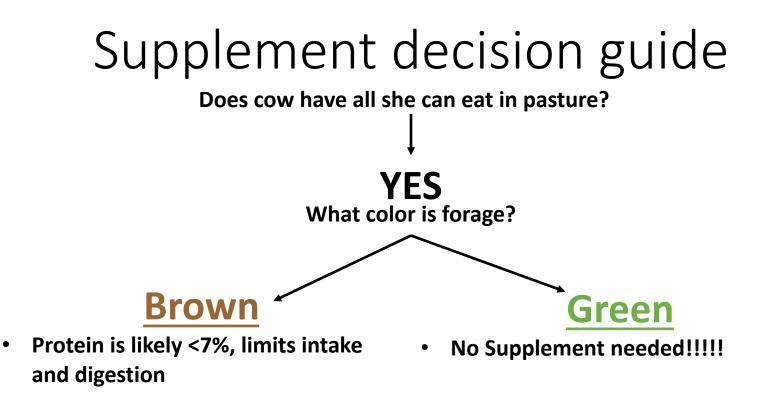
Figure 1. Forage dry matter (DM) intake relative to the forage crude protein (CP) content.

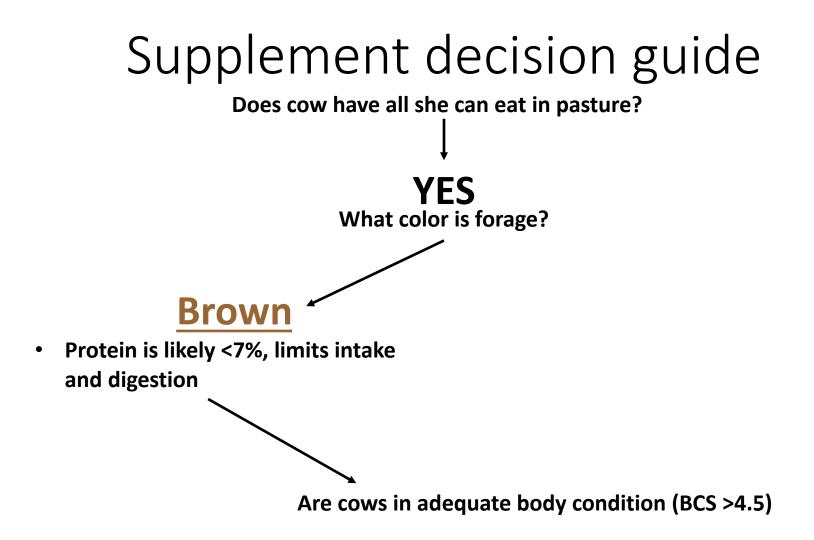
Mathis, 2003



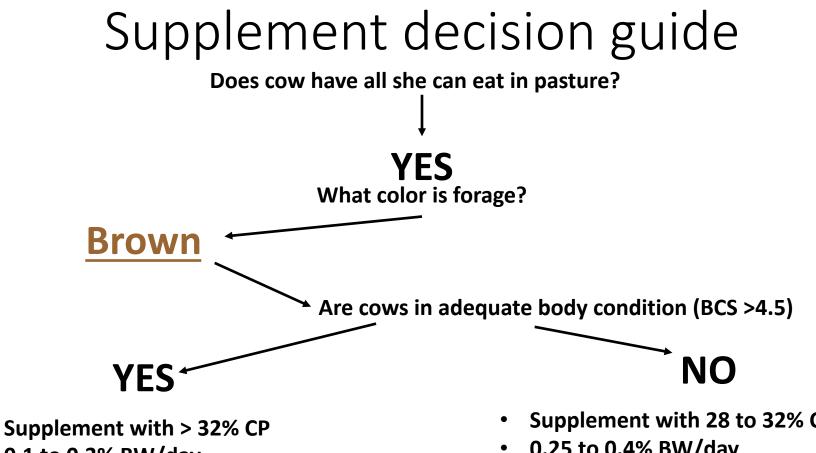
Does cow have all she can eat in pasture?

NO


- Forage supply is inadequate; energy deficient
- Reduce the forage needs of herd by lowering stocking rate and/or feeding supplement



• Price \$/lb TDN



- 0.1 to 0.3% BW/day
- Improves rumen efficiency
- Price \$/lb CP

- Supplement with 28 to 32% CP
- 0.25 to 0.4% BW/day
- Improves rumen efficiency
- **Provides extra energy**
- Price \$/lb CP and \$/lb TDN

Mineral requirements based on stage of production, maximum tolerable levels and the greatest impact on performance in beef cattle.^a

	Growing- Finishing	Gestating Dry Cows	Lactating Cows		
Mineral	BW 650 lbs	BW 1,250 lbs	BW 1,200 lbs	Max. Tolerable	Performance Impacted
Ca, %	0.31	0.18	0.27	1.8	Growth
P , %	0.27	0.18	0.27	0.3	Growth
Na, %	0.07	0.07	0.10	4.0	Milk Prod.
Cl, %	_	—	_	4.0	Milk Prod.
Mg, %	0.10	0.12	0.20	0.40	Growth
S, %	0.15	0.15	0.15	0.40	Growth
K, %	0.60	0.60	0.70	3.0	Reprod.
Co, ppm	0.10	0.10	0.10	10.0	Growth
Cu, ppm	10.0	10.0	10.0	100.0	Growth
l, ppm	0.50	0.50	0.50	50.0	Milk Prod.
Mn, pm	20.0	40.0	40.0	1000.0	Reprod.
Se, pm	0.10	0.10	0.10	2.0	Immunity
Zn, ppm	30.0	30.0	30.0	500.0	Immunity

^a Requirements based on values provided by NRC, 2000, and expressed in concentration (% or ppm).

CANTANA, PRINCELL

P.O. BOX 1264

CROWNPOINT, NM 87313

ANALYSIS

	Dry Basis	As Received	
Moisture		6.34	%
Dry Matter		93.66	%
Protein, Crude	2.86	2.68	%
ADF-Acid Detergent Fiber	41.93	39.27	%
NEL: Net Energy-Lactation	0.46	0.43	Mcal/lb
NEG: Net Energy-Gain	0.13	0.12	Mcal/lb
NEM: Net Energy-Maintenance	0.37	0.35	Mcal/lb
TDN: Total Digestible Nutrients	45.9 4	43.03	%
alcium	0.45	0.42	%
hosphorus	Less than 0.01		%
otassium	0.15	0.14	%
1agnesium	0.06	0.06	%
odium	Less than 0.01		%
ulfur	0.10	0.09	%
Juminum	1320.00	1236.31	ppm
obalt	2.04	1.91	ppm
Copper	7.40	6.93	ppm
ron	784.00	734.29	ppm
1anganese	36.40	34.09	ppm
10lybdenum	2.85	2.67	ppm
/inc	9.38	8.79	ppm

LANTANA, MIKELLE P.O. BOX 1264 CROWNPOINT, NM 87313

ANALYSIS

	Dry Basis	As Received	
Moisture		7.07	%
Dry Matter		92.93	%
Protein, Crude	2,87	2.67	%
ADF-Acid Detergent Fiber	41.76	38.81	%
NEL: Net Energy-Lactation	0.46	0.43	Mcal/lb
NEG: Net Energy-Gain	0.13	0.12	Mcal/lb
NEM: Net Energy-Maintenance	0.38	0.35	Mcal/lb
TDN: Total Digestible Nutrients	46.17	42.91	%
Calcium	0.18	0.17	%
Phosphorus	Less than 0.01		%
Potassium	0.32	0.30	% ,
Magnesium	0.04	0.04	%
Sodium	0.02	0.02	%
Sulfur	0.06	0.06	%
Aluminum	250.00	232.33	ppm
Cobalt	0.78	0.72	ppm
Copper	4.61	4.28	ppm
ron	190.00	176.57	ppm
Manganese	32.80	30.48	ppm
Molybdenum	1.37	1.27	ppm
Zinc	8.84	8.22	ppm

LANTANA, MIKELLE P.O. BOX 1264 CROWNPOINT, NM 87313

ANALYSIS

	Dry Basis	As Received	
Moisture		7.07	%
Dry Matter		92.93	%
Protein, Crude	2.87	2.67	%
ADF-Acid Detergent Fiber	41.76	38.81	%
NEL: Net Energy-Lactation	0.46	0.43	Mcal/lb
NEG: Net Energy-Gain	0.13	0.12	Mcal/lb
NEM: Net Energy-Maintenance	0.38	0.35	Mcal/lb
TDN: Total Digestible Nutrients	46.17	42.91	%
Calcium	0.18	0.17	%
hosphorus	Less than 0.01		%
Potassium	0.32	0.30	%
1agnesium	0.04	0.04	%
odium	0.02	0.02	%
ulfur	0.06	0.06	%
luminum	250.00	232.33	ppm
Cobait	0.78	0.72	ppm
Copper	4.61	4.28	ppm
ron	190.00	176.57	ppm
langanese	32.80	30.48	ppm
1olybdenum	1.37	1,27	ppm
/inc	8.84	8.22	ppm

	DMI Ib	CP %	TDN %	ME Mcal/d	NEm Mcal/d	Ca %	P %
HEIFER 1200 lb Mature BW 10 lb of milk							
First	19.8	7.2	50.6	0.46	0.21	7.19	0.18
Second	21.5	7.4	51.5	0.48	0.23	7.35	0.17
Third	23.7	8.7	56.6	0.56	0.30	8.68	0.22
COW 1200 lb mature BW 10 lb of milk							
First	25.2	7.4	52.2	0.87	0.49	7.35	0.17
Second	24.1	6.2	45.9	0.77	0.39	6.22	0.12
Third	24.2	7.8	52.6	0.88	0.49	7.84	0.16
Lactation/breeding	25.1	8.5	55.0	0.92	0.53	8.45	0.20
COW 1200 lb mature BW 20 lb of milk							
First	26.5	8.6	54.8	0.91	0.53	0.24	0.17
Second	24.1	6.2	45.9	0.77	0.39	0.15	0.12
Third	24.2	7.8	52.6	0.88	0.49	0.25	0.16
Lactation/breeding	27.7	10.2	58.7	0.98	0.59	0.3	0.20

			•				
	DMI	СР	TDN	ME	NEm	Са	Р
	lb/d	lb/d	lb/d	Mcal/d	Mcal/d	lb/d	lb/d
HEIFER 1200 lb mature BW 10 lb of milk							
First	19.8	1.42	10.01	9.11	4.16	0.045	0.036
Second	21.5	1.58	11.10	10.34	4.96	0.047	0.037
Third	23.7	2.06	13.44	13.22	7.21	0.073	0.053
COW 1200 lb mature BW 10 lb of milk							
First	25.2	1.85	13.13	21.90	12.33	0.050	0.036
Second	24.1	1.50	11.07	18.48	9.32	0.036	0.029
Third	24.2	1.90	12.74	21.23	11.95	0.061	0.039
Lactation/breeding	25.1	2.12	13.80	23.08	13.38	0.060	0.042
COW 1200 lb mature BW 20 lb of milk							
First	26.5	2.28	14.54	24.25	13.01	0.064	0.039
Second	24.1	1.50	11.07	18.48	9.32	0.036	0.032
Third	24.2	1.90	12.74	21.23	11.95	0.061	0.039
Lactation/breeding	27.7	2.83	16.25	27.11	14.75	0.082	0.054

	DMI lb/d	CP lb/d	20% feed lb/d	32% feed lb/d
HEIFER 1200 lb mature BW 10 lb of milk				
First	19.8	1.42	1.2	0.7
Second	21.5	1.58	2.0	1.3
Third	23.7	2.06	4.5	2.8
COW 1200 lb mature BW 10 lb of milk				
First	25.2	1.85	3.4	2.1
Second	24.1	1.50	1.6	1.0
Third	24.2	1.90	3.7	2.3
Lactation/breeding	25.1	2.12	4.8	3.0
COW 1200 lb mature BW 20 lb of milk				
First	26.5	2.28	5.7	3.6
Second	24.1	1.50	1.6	1.0
Third	24.2	1.90	3.7	2.3
Lactation/breeding	27.7	2.83	8.6	5.4

Assumptions: 1.2 lbs CP from forage Cube is 95% DM

			-	
	DMI	СР	20%	32%
	lb/d	lb/d	feed lb/d f	ieed lb/d
HEIFER 1200 lb mature BW 10 lb of milk				
First	19.8	1.42	4.3	2.8
Second	21.5	1.58	4.8	3.2
Third	23.7	2.06	6.9	4.6
COW 1200 lb mature BW 10 lb of milk				
First	25.2	1.85	5.6	3.8
Second	24.1	1.50	4.1	2.7
Third	24.2	1.90	6.0	4.0
Lactation/breeding	25.1	2.12	7.0	4.7
COW 1200 lb mature BW 20 lb of milk				
First	26.5	2.28	7.6	5.1
Second	24.1	1.50	4.1	2.7
Third	24.2	1.90	6.0	4.0
Lactation/breeding	27.7	2.83	10.2	6.8

Assumptions: 2.86% CP in Forage Cube is 95% DM

Assumptions: 46% TDN

				TDN
	DMI	СР	TDN	Supplied
	lb/d	lb/d	lb/d	lb/day
HEIFER 1200 lb mature BW 10 lb of milk				
First	19.8	1.42	10.01	9.1
Second	21.5	1.58	11.10	9.9
Third	23.7	2.06	13.44	10.9
COW 1200 lb mature BW 10 lb of milk				
First	25.2	1.85	13.13	11.6
Second	24.1	1.50	11.07	11.1
Third	24.2	1.90	12.74	11.1
Lactation/breeding	25.1	2.12	13.80	11.5
COW 1200 lb mature BW 20 lb of milk				
First	26.5	2.28	14.54	12.2
Second	24.1	1.50	11.07	11.1
Third	24.2	1.90	12.74	11.1
Lactation/breeding	27.7	2.83	16.25	12.7
BE BOLD. Shape the Future.				

College of Agricultural, Consumer and Environmental Sciences

BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

Water Contributions

The College of Agricultural, Consumer and Environmental Sciences is an engine for economic and community development in New Mexico, improving the lives of New Mexicans through academic, research, and Extension programs.

Suboptimal Water Intake

- We often think of lack of water as severe dehydration
- Try to think about water like other aspects of production. There is an optimum and intake that is less than optimum will result in varied physiological responses
- Relative to water, dry matter intake is significantly impacted by "water quality"

Water Quality and Intake

Table 2. Intake and performance of growing steers supplied water with various total dissolved
solid and sulfate levels in western South Dakota (Least Squares Mean) ^a

	Total Dissolved Solid/Sulfate Level, ppm						
Item	1,226/441	2,933/1,725	4,720/2,919	7,268/4,654	SEM		
Initial Weight, Ib	642	640	640	639	2		
Final Weight, Ib ^b	827	812	794	710	5		
ADG, lb/d ^b	1.78	1.65	1.48	0.61	0.11		
DM Intake, lb/d ^b	20.79	20.62	18.95	13.18	0.95		
Gain/Feed ^b	0.086	0.080	0.078	0.045	0.005		
Water Intake, gallons/d ^c	15.04	13.43	11.97	9.53	0.62		

^aCattle fed a consistent diet (0.97 Mcal/kg NEg) and provided various water for 104 days during the summer. ^bMeasurements declined quadratically with increasing total dissolved solids and with increasing sulfates (*P* < 0.05). ^cMeasurements declined linearly with increasing total dissolved solids and with increasing sulfates (*P* < 0.01).

Intake, ADG, and Gain/Feed declined with increasing TDS/Sulfate concentrations!

BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu Patterson et al., 2004 SDSU Beef Report 6

Management Considerations: Drought

- Water from forage
- Assume cow requires 24 lbs DM
 - 88% DM = consume 27 lbs forage = 3.34 lbs H2O (1/2 gallon)
 - 60% DM = consume 40 lbs forage = 16 lbs H20 (1.5-2.0 gallons)
- Cows grazing green forage can obtain up to 8 gallons water from grazing alone (Ted McCollum)

College of Agricultural, Consumer and Environmental Sciences

BE BOLD. Shape the Future. New Mexico State University aces.nmsu.edu

Acknowledgements: Shad Cox Dr. Eric Scholljegerdes Dr. Marcy Ward Corona Range and Livestock Research Center

The College of Agricultural, Consumer and Environmental Sciences is an engine for economic and community development in New Mexico, improving the lives of New Mexicans through academic, research, and Extension programs.

Questions?

Craig Gifford

Extension Beef Cattle Specialist Department of Extension Animal Sciences and Natural Resources New Mexico State University P.O. Box 3000, MSC 3AE Las Cruces, NM 88003 cgifford@nmsu.edu Phone: 575-646-6482

